
N4 COMMUNICATIONS CO
DriveVME Users Guide and Reference

Version 4.3, November 2006.

DriveVME

Version

4

Page 2

N 4 C O M M U N I C A T I O N S C O

DriveVME User’s Guide and
Reference

 1996, 97, 98, 99, 2000, 2005, 2006 N4 Communications Co
2118 Lundy Lane Bettendorf, Iowa 52722
Phone 563.650.7800 • Fax 563.332.9633

http://www.n4comm.com

Page 3

TABLE OF CONTENTS

INTRODUCTION TO DRIVEVME..5
VERSIONS: DEVELOPMENT KIT, RUNTIME, EVALUATION ...6
MATCHING DRIVEVME AB ILITIES WITH YOUR REQUIREMENTS8
LOCAL OR REMOTE CHASSIS VME EXPLORATION AND DIAGNOSIS8
NO-PROGRAMMING VME-TO-SPREADSHEET SETUP ..8
VME THROUGH TYPICAL FILE OPERATIONS ...8
THE DRIVEVME LIBRARY FOR RAPID DEVELOPMENT...8
HIGH-PERFORMANCE ADVANCED USER MODE PROGRAMS ...9
RUN VME-‘C’ KERNEL PROGRAMS LOCALLY OR REMOTELY, NO WINDOWS
REQUIRED ...9
ESTABLISHING VME HARDWARE AS ANY OTHER WINDOWS DEVICE.......................9
HANDLING UNINTERRUPTABLE REQUIREMENTS AND THOUSANDS OF
INTERRUPTS PER SECOND...9
DRIVEVME INSTALLATION & DISTRIBUTION ... 10
REMOVING DRIVEVME... 11
TROUBLESHOOTING INSTALLATION AND STARTUP PROBLEMS 11
THE DRIVEVME ENVIRONMENT ... 15
MAP OF DRIVEVME OPERATIONS .. 16
DRIVEVME FILES ... 18
ASSISTVME: YOUR WINDOW ON VME OPERATIONS ... 22
LOCAL CHASSIS VME BUS EXPLORATION & CONFIGURATION WITH
ASSISTVME .. 24
THE VME OPERATIONS LOG WINDOW .. 24
VME AND PCI CHASSIS CONFIGURATION.. 25
GENERATING VME CYCLES OTHER THAN INTERRUPTS .. 27
VME BUS ERROR HANDLING ... 36
ASSISTVME SOFTWARE AUTO-CREATION PAGE... 39
MAKING RAM DRIVES US ING VME RESOURCES .. 40
RESPONDING TO VME REQUESTS FROM OTHER SOURCES ... 41
AUTOMATICALLY GENERATING SOFTWARE THAT S HARES A RESOURCE......... 47
CREATING VME SHARE RAM DRIVES FROM LOCAL MEMORY 47
RESPONDING TO VME INTERRUPTS VIA FILE I/O ... 48
GENERATING VME INTERRUPTS .. 50
MONITORING VME INTERRUPTS .. 51
WORKING WITH VME CHASSIS VIA NETWORKS ... 52

Page 4

THE VME KERNEL ‘C’ INTERPRETER AND DEVELOPMENT ENVIRONMENT.......54
THE DRIVEVME USER MODE LIBRARY ‘DLL’ ..57
WRITING VME WINDOWS DEVICE DRIVERS ..59
TECHNICAL REFERENCE: INITIATING VME TRANSACTIONS VIA MEMORY MAP
OR FILE I/O...60
TECHNICAL REFERENCE: OFFERING LOCAL RESOURCES TO OTHER VME B US
MASTERS ...85
TECHNICAL REFERENCE: RESPONDING TO VME INTERRUPTS VIA FILE I/O
(USER MODE)...105
DRIVEVME LICENSE AGREEMENT...112

Page 5

DriveVME - Introduction
DriveVME is a collection of Windows NT/XP programs,
libraries and device drivers that maximizes particular VME
processor board features on both local and remotely networked
chassis while offering standard interfaces to end users and
programmers at all requirement and skill levels. DriveVME
aims to be the definitive statement in Windows- to- VME
interfacing.

DriveVME completely manages and shares all aspects of the processing

environment’s VME interface, making it possible for user programs and user created

native NT device drivers that make use of VME resources to be developed and

maintained independently -- yet run concurrently, and without unnecessary processing

platform hardware dependencies.

Page 6

NOTICE - NOTICE - NOTICE
Read the file DriveVMEReadME.txt to learn of last minute changes and
important notices of hardware errata, operating limitations and capabilities
specific to your hardware. It is displayed via the ‘Getting Started’ VME

operations Menu Option.

At this writing DriveVME is supported on 20 processing platforms including designs
incorporating the Tundra/Universe I, II and IIB and 148 PCI-VME interface chips,
the BIT3 PCI – VME chassis links, Cypress chip as well as other Pentium/Athlon and
compatible designs.

To use this manual or DriveVME successfully, you must have a basic knowledge what
interaction the VME resource you wish to work with has with the VME bus. This
includes knowledge about the VME device such as which VME addresses and
interrupts it uses that are interesting to your requirements. It does not require
understanding in particular how the processor board manipulates the VME bus.

This manual does not attempt to describe in detail what the VME bus is, or even most
of its electrical and other specifications. That said, nearly everything relevant about the
VME bus from the programmer’s perspective and much about it’s logical organization
can be inferred from reading the chapter “AssistVME”. For more information on the
VME bus, see www.vita.com .

You do not need to be a Windows programmer in particular or even able to program
at all to make full use of DriveVME’s VME diagnostic and exploratory abilities. On
the other end of the spectrum, experienced real-time C programmers will find a full
suite of fully managed interface points, fully exposing every VME ability the hardware
affords.

DriveVME is distributed in three generic versions:

1. “DVMEDDK”. DriveVME Development Kit is a licensed fully featured VME
development and diagnostic environment. Although it offers interface points to
other device drivers, file systems, network users, DLL programmers and GUI
application developers, its most visible end-user application is “AssistVME” –
called by some as “Fully featured VME-- but with removable training wheels”.
DVMEDDK is licensed like a compiler, one license per developer or end user.

2. “DVMERUN”. Programs and device drivers developed using DVMEDDK can
take advantage of DVMERUN. DVMERUN provides all the program access
points of DVMEDDK and only error reporting end-user features, while
consuming fewer memory and storage resources and at approximately one tenth

Page 7

the cost. DVMERUN is licensed as though it were a part in a system, with license
ownership transferring with the ownership of the system in which it is embedded.

3. “DriveVME Eval”. For all the vendors whose processors are available to the
public, N4 Communications offers a free, fully functional but time limited version
of DVMEDDK on its website, www.n4comm.com for evaluation. DriveVME is
a system’s design level product, and as such users are assumed to be knowledgable
about and assume responsibility for the technical complexities, risks and particular
performance they require. The evaluation version of DriveVME exists to help
make those determinations prior to purchase of a license.

DriveVME is not sold to end-users directly, but only through processor board
manufacturers and embedded systems manufacturers. Contact your processor vendor
about purchasing DriveVME.

Page 8

Matching DriveVME’s Abilities
with Your Requirements
Use this section to determine which of DriveVME’s features meet your needs,
then go the relevant section of this manual for appropriate detail.

1. “I want an easy to use graphical program that fully exposes all local or network
remote VME chassis resources for exploratory or diagnostic purposes, including a
way to take snapshots of VME settings to email for support purposes.”
--If this describes your needs, read the chapter titled “ASSIST-VME”.

2. “I want a nothing-fancy quick way to read a chunk of data from either a local or
remote VME bus directly into my spreadsheet or database application”.
--If this describes your needs, read the chapter titled “ASSIST-VME” and
the “file-oriented VME I/O” sub-section.

3. “I’m a Visual-Basic or FoxPro or Office comfortable programmer, and can open
and close and read and write files, but I’m leery about DLL’s. I want to do a few
things with VME resources on a local or networked-remote chassis. Some of it
may involve dealing with VME interrupts, but not more than a dozen or so per
second and if there occasionally are short but variable delays between when the
interrupt happens and my user program gets to it, that’s ok.”
--If this describes your needs, read the chapter titled “file-oriented VME
I/O” and “file-oriented interrupt handling” sub-sections.

4. “I’m able to write stand alone Windows user-level applications that have graphical
interfaces and can use dynamic link libraries. I want to create a stand-alone
program to have full access to a great variety of VME resources on a the local or a
networked-remote chassis, and am willing to trade a little performance for rapid
development and easier-to-understand code.”
--If this describes your needs, read the chapter titled “The DriveVME
DLL”.

W H I C H D R I V E V M E F E A T U R E S D O I N E E D ?

Page 9

5. “I’m a Windows ‘C’ or ‘C++’ programmer and wish to create a user application
that uses only a few VME resources and/or requires the highest possible
performance available to a user-level program on a local or remote chassis.”
--If this describes your needs, read the chapters including “file I/O initiated
access to VME resources”.

6. “I’m a programmer who knows the ‘C’ language and I may use Windows or may
have programs based on other platforms. I want to create a high-performance
VME program that is run and interpreted in the kernel of a local or remote
Windows VME chassis, possibly to the exclusion of anything else on the system
from time to time. I want this program to communicate its results and take
direction from a user – level program on the same or possibly another chassis that
may or may not be running Windows at all. And I don’t want to have to deal with
learning Windows device driver level or even Windows programming at all.”
--If this describes your needs, read the chapter “Interpreted Kernel ‘C’
VME via file-IO ‘console’”. (This feature allows a TCP/IP or network-
sharable ‘file’ to accept a VME-capable K&R C program --which is then
compiled to P-code and run in the kernel of the target processor. The C
program’s console I/O is accessed by further read and writes to the same
file handle the program was sent in on).

7. “I have a VME device I want to integrate into the Windows/NT environment,
just as though it were any other NT device like a serial port or network card. I am
able to write NT/2000 device drivers and just need to know how to hook into
DriveVME to gain access to the local VME bus.”
–If this describes your needs, read the chapter “Writing a VME – aware
NT/2000/XP Device Driver”

8. “My application calls for the shortest possible delay between when a VME
interrupt happens and when the processor responds to it, or must run critical
operations without the possibility of interruptions. There may be thousands of
interrupts per second to deal with in a versatile way. It’s more than DriveVME’s
native kernel C interpreter can handle. I am willing to create a Windows device
driver to respond to these interrupts at the highest possible performance, then
have that accessed by my user-mode application for lower-priority processing.
How do I hook into DriveVME at the device-driver kernel level?”
–If this describes your needs, read the chapter “Writing a VME – aware
NT/2000 Device Driver”

I N S T A L L I N G A N D R E M O V I N G D R I V E V M E

Page 10

DRIVEVME INSTALLATION

All versions of DriveVME are distributed complete in one executable file. The first
two letters of the file name are the key to the general nature of the contents.

• “DV….exe” Distribution files that begin with “DV” are fully functional but time
– limited, freely distributed evaluation versions of the DriveVME DDK.

• “N4….exe” Distribution files that begin with “N4” are fully functional, licensed
versions of the DriveVME development kit.

• “Nr…exe” Distribution files that begin with “Nr” are fully functional, licensed
DriveVME runtime environments.

The next set of up to 3 digits reflect the version number of the software, the first digit
reflecting the major version number, and the rest the minor release number. For
example, “DV312…exe” would be the evaluation DDK for version 3.12.

The remaining letters and digits are keys to the particular processor make and model
that version of DriveVME is supports. Different processor manufacturers use varied
approaches in their VME implementations, all of which have an effect on any
programs that relate to the VME bus. There is variability in memory management,
interrupt routing, data-lane (byte-swapping) hardware, lamps, switches, bus bridges,
and even generic access. DriveVME connects the various features into standard
interface points so that software written to DriveVME will run across VME processor
platforms and models. For example, DV10XY4.exe specifies the DriveVME
evaluation kit version 1.0 for a 486 class process made by Xycom Corp. in the mid
1990’s – the first platform supported by DriveVME.

Licensed versions of DriveVME are distributed on CD-ROM’s, in most cases one per
purchase order received. A single copy of each of the ordered software packages is
recorded on the CD-ROM, along with a proof-of-license (which is in fact part of N4
Communication’s invoice for the order.)

DISTRIBUTION
METHODS AND FILE
NAMING

I N S T A L L I N G A N D R E M O V I N G D R I V E V M E

Page 11

INSTALLING DRIVEVME

< FIRST: REMOVE ANY PREVIOUS VERSIONS THEN REBOOT >

Before installing DriveVME, it is essential that any previous version (no matter the
type of the previous version) be uninstalled, and the system rebooted. No copy of
DriveVME can be running in any fashion or the installation of the new version of
DriveVME will certainly fail. This is because DriveVME manages the VME interface,
a system level resource, and also incorporates itself into the file system (the “V” drive
refers to DriveVME) – Windows does not support removing this type of software
without rebooting. To uninstall DriveVME, choose the “Uninstall” option in the
“VME Operations” section of the “Programs” part of the “Start” button menu. Or,
run the program “remove.bat” in the directory “C:\DriveVME”. Choose “OK” at the
various prompts that appear, then do a “cold” reboot of the system.

Installing DriveVME is as simple as running the single program file appropriate to
your processor. You must have administrative privileges to install DriveVME.

Use the naming system described above to select the appropriate file. If all goes well,
the installation will “unpack” all the DriveVME components into a directory
“C:\DriveVME”, then go about placing files in the “system32\drivers” and
“system32” directory of your Windows folder. It will update the registry then launch
the device driver and supporting error alerting service, as well as VME ‘viewable’ ram
disks. It will create a “VME Operations” program group, which provides access to
“AssistVME” – the user-level VME exploratory and diagnostic and utility program.

If all goes well, you should see a message to the effect “DriveVME installed and
running”. Click “OK”, at this point, installation is complete. DriveVME is fully
available from that point forward, and will re -install itself every reboot until removed.

It is easy to check whether DriveVME is running properly on any system. DriveVME
establishes what appears to be a “disk” drive, it uses the letter “V”. Use windows to
display the contents of the “V” drive. If it exists and DriveVME is running properly,
you should see, among other things, a file titled “aboutn4.txt”. Displaying this file
should offer the version number of DriveVME running, and contact information.

System Administrators can control access to DriveVME, and thereby the VME bus by
applying desired security measures to the “V” drive.

TROUBLESHOOTING INSTALLATION PROBLEMS

The most typical reason for installation failure is incomplete
removal of evaluation DriveVME versions. See above for that procedure.
Other reasons for installation failure are recorded in the Windows/NT “Event
Viewer”, viewable from the “Administrative Tools” launch menu. Be sure to have

I N S T A L L I N G A N D R E M O V I N G D R I V E V M E

Page 12

those messages available to you when you are seeking support help. The most
common remaining reasons for launch failure are:

1. Incomplete removal of other software which manages VME access
hardware. DriveVME manages all aspects of the relationship between
Windows/NT/2K/XP and the VME bus. Any other software which attempts to
alter the devices which control that relationship would render the system’s
operations unpredictable. You must completely remove from activity any other
device drivers or programs which “claim” the resources related to the VME
interface logic from the system then reboot. Some of the processor vendors
supported by DriveVME offer their own basic VME management drivers, these
must be uninstalled before DriveVME can function reliably.

Note: N4 in the past has implemented “compatibility” packages that allow software written to
vendor-specific VME driver specifications to operate with DriveVME with no change. If you
have existing applications written to use vendor specific drivers, contact N4 relative to creating a
such a compatibility package for you.

2. Interrupt sharing conflicts with other devices block DriveVME from
loading. DriveVME requires that at least one interrupt attached to the VME
interface logic be routed and available for use by Windows/NT. Usually the
system “BIOS” setup screens offer users a way to enable or establish this interrupt
access and routing. Contact your processor vendor for details about this setting.

Also, in nearly every case, DriveVME is set by processor vendors not to “share”
the interrupt associated with all VME interrupts with any other devices. That is
because DriveVME seeks to offer known latencies between when a VME
interrupt occurs and when it is processed by the user. If other devices can also use
the interrupt line used by DriveVME, then the VME interrupt service latencies can
vary with the interrupt traffic generated by non-VME devices. If DriveVME’s
reason it can’t start is interrupt related, use the “Windows NT diagnostics” under
“resources” / “IRQ” to check for the assignment of an additional device to the
same line the VME interface is set to use. To resolve these issues, most vendors
offer system BIOS settings to enable and disable devices and select the interrupt
lines they use.

Rest assured that if DriveVME is offered for a particular processor make and
model, it has passed an evaluation and checkout suite of tests and is known to
work with the version supplied to N4 by the processor vendor.

Some very few vendors, with specific applications in mind for their hardware,
intentionally share the VME interrupt with other resources, your vendor can
inform you if this is the case for your processor.

I N S T A L L I N G A N D R E M O V I N G D R I V E V M E

Page 13

3. Memory mapping conflicts. One of DriveVME’s main functions is to offer
access to VME addresses via the processor’s address space. There are very many
distinct and incompatible ways the VME bus can be addressed, so different
applications will nearly certainly need to access the VME bus in a manner entirely
incompatible with other applications. Most versions of DriveVME reserve a little
over 3GB of the 4GB address space. If your application calls for more than 800
Meg or more of physical memory, contact N4 for a version of DriveVME that
offers less VME options, but allows for more physical RAM in the system.

Alternately, this conflict can arise when custom devices (not typically installed with
the vendor’s hardware) use PCI address space are located “smack in the middle” of
the NT physical address space. Using the configuration programs associated with
these devices to move them to the high or low end of the address space usually
resolves these issues.

4. Out of date BIOS versions. Early in the development cycle, most processor
vendor’s BIOS versions fail to implement the VME interface setup fully. They
either overlook to connect the interrupt system to the VME chip, or other issues
that effectively “hide” the interface from Window/NT standard hardware “HAL”
manipulation logic. As DriveVME is very careful to follow all the Windows
conventions, it attempts to “reserve” or “claim” or “register” the use of the VME
chip’s resources. Incomplete BIOS implementations cause NT to report that no
such resources are indeed available (even if in fact they are); or that even if
available- they aren’t actually usable. If none of the above items in the
troubleshooting list appear to solve the problem, check with the processor vendor
for the latest BIOS updates. Drivers other than DriveVME sometimes “work” in
these degraded circumstances with this hardware because they don’t follow
Microsoft prescribed practices of notifying the OS about claimed resources so as
to avoid conflicts.

(NOTE: Be advised that in very rare circumstances, a very few processor vendors,
mostly dedicated application vendors, made incompatible BIOS changes after their
products were qualified with DriveVME-- so that the earlier BIOS worked and the
later ones would not. If your system had a recent BIOS change and DriveVME
fails to load, and none of the issues 1-3 above seem to apply, check this option
with your processor vendor.)

If none of the above solutions permits DriveVME to load properly, the first line of
support is the group from whom you purchased the system. If your system uses VME
processors as an embedded part of a larger application, then contact the embedded
system company’s support group first, then the processor vendor’s support company.

As DriveVME is not sold directly to end users, N4 Communications will only
participate in direct end-user support if the process is managed and includes the active
involvement of support personnel from a company reselling DriveVME. That said,

I N S T A L L I N G A N D R E M O V I N G D R I V E V M E

Page 14

N4 Communications is dedicated to the success of any group using its products and
will cooperate fully in the resolution of such problems as may arise.

T H E D R I V E V M E E N V I R O N M E N T – F I L E S A N D R E S O U R C E S

Page 15

The DriveVME Environment –
Files, Connections & Resources
This section outlines the various major elements of DriveVME, where they reside and
a brief description of their role in providing VME resources to you. While it doesn’t
discuss operational aspects of DriveVME, it provides a roadmap to DriveVME’s
impact on the system and a quick locator of which files support what features. It
assumes that DriveVME is up and running in your VME / Windows environment.

One basic key fact about DriveVME to keep in mind is that DriveVME offers most of
its abilities through using the regular Windows file system to access very special
purpose “files” on a psuedo disk drive “V:\” created by DriveVME. Sharing, security,
specifications and so forth are specified through carefully constructed names to
particular “folders” on the “V” drive. Even reading the starting address of arrays in
user programs that have relationships to VME operations is through these files.

New in Version 4, under Windows XP: By default the security is set so
that only the system administrators, kernel drivers and system
processes can access the V drive. As access to the V drive is in
effect a window into the kernel operations, this level of protection
is mandatory. The file DriveVMEDD.h defines:

 GUID_DRIVEVME_DEVICE_INTERFACE_CLASS

Under which the V:\ is opened. Therefore, users who wish to
modify this device setup class can override the V:\ drive’s type,
exclusivity settings (shared) and security parameters (restrictive by
default). See “Setting Device Object Registry Properties After
Installation” for details in Microsoft’s Windows DDK Kernel
Mode Architecture document for detail.

The helpful graphical user program “AssistVME”, key to doing development with
DriveVME, has as it’s principal function translating human-understandable desires

T H E D R I V E V M E E N V I R O N M E N T – F I L E S A N D R E S O U R C E S

Page 16

relative to VME activity into the appropriate “VME” file name and transactions with
the specially created VME “file”.

DriveVME offers specific services requested during the time the “file” is held open,
and ceases to undertake the specified activity when the “file” is closed. Various
features of DriveVME’s DLL or user library all boil down to calls and files routed
through this venue.

The “V” drive can be shared over a network just as any other drive can be, and
through that mechanism VME resources can be offered to off-card and even off-
chassis programs.

Even DriveVME’s special purpose kernel mode ‘C’ compiler and P-Code interpreter is
accessed through reading and writing to a special “file” on the “V” drive.

T H E D R I V E V M E E N V I R O N M E N T – F I L E S A N D R E S O U R C E S

Page 17

General Relationship of DriveVME to Windows NT

DriveVME and The Registry

DriveVME adds entries to the Windows/NT registry. In particular, the “current
control set” “services” key includes configuration information for AssistVME (the
graphical VME exploratory program’s support service); DriveVME (the main VME
interface device driver); and VMEDisk (the facility that allows local or VME memory
to act as a “RAM” disk on the system). There shouldn’t be any typical occasion for
users to understand or directly manipulate these registry items directly. Windows itself
adds items to the “Resourcemap” keys when DriveVME specifies VME interface chip
IO, interrupt and other requirements.

T H E D R I V E V M E E N V I R O N M E N T – F I L E S A N D R E S O U R C E S

Page 18

C:\DRIVEVME – DriveVME’s file repository

The single DriveVME distribution file “unpacks” by default into the directory at
c:\DriveVME. While all files needed for active operations are copied elsewhere, many
development and informational files exist only there.

After any installation, take a moment to check the contents of
“DriveVMEReadMe.Txt” in this directory. The latest features and version change
reports are loaded there. Here is a catalog:

• DriveVME.SYS
This file is a Windows kernel mode device driver which actually provides the great
majority of all the VME related services. It is the same for development and
runtime versions. The active copy of this file resides in the active
windows\system32\drivers directory. It is loaded very early on in the boot
process. Its use is essential to DriveVME operations.

• AssistVME.EXE
This user mode file has many different roles. It is run as a system service every
system boot, where without user intervention, it watches for unusual events
(such as bus errors) from DriveVME. When they occur, it launches another
copy of itself in the typical interactive 'user help' mode, explaining the event
and offering assistance. If a copy is already running in user mode, then it pops
to the foreground with an updated screen discussing the VME event. The
active copy of this file is also in the drivers directory.

The development version of AssistVME is very large, offering extensive
diagnostic and development services. The runtime version is very streamlined,
offering error logging services only.

It is not necessary to run AssistVME to use DriveVME. To disable
AssistVME, go to the "services" section of the "control panel", look for
"VME operations assistance service", then select "stop". This will disable the
service until the next reboot. If you want to stop the service from being
launched automatically until further action, choose the startup button, then
select "manual" startup options.

Note that even when not launched automatically, running "AssistVME -
Helpuser" is available at any time to get the latest VME operations
information.

AssistVME is not essential to DriveVME operations, but provides
tremendous added value.

ASSISTVME.HLP -Optional AssistVME text help file

T H E D R I V E V M E E N V I R O N M E N T – F I L E S A N D R E S O U R C E S

Page 19

• VMEDisk.sys
This device driver provides VME RamDrive Support. This is an add on product.
It allows VME memory or PC memory exposed to VME either on a local or
remote chassis to be accessed like a local hard drive with a FAT file format.
Choose the disk icon in AssistVME to review current selections, Choose either the
slave, master or memory mapped "Software" options to establish the disk
accessing VME with the selected resources.

NOTE: If you wish to establish a local ram disk which refers to VME memory on
a chassis over a network, then AFTER NORMAL INSTALLATION you must:
go to the services option of the control panel- look for VME Operations
Assistance Service. Choose Startup. Then change "Log On As" to refer to a
specific account and password that has access to the desired remote network
resource. Save the changes then reboot. From then on, the system will make the
remote VME resource mapped appear to be a local "disk" drive.

• Files associated with easy access to DriveVME though the user mode
dynamic link library “DLL”:

1. DriveVME.dll -Handy user routines which run a kernel "C" Java program
delivering common DriveVME features to user mode programs.

2. DVMEDLL.h -Include file for DriveVME.DLL users (contains many
examples and documentation).

3. DriveVME.exp -File some developers need to use ""

4. DriveVME.lib -File some developers need to link for ""

• System “Include” files for DriveVME’s kernel “C” Interpreter (copied to the
system32\drivers directory) NOTE – THESE ARE NOT ASSOCIATED WITH THE
DLL MENTIONED ABOVE:

1. CTYPE.H -Kernel "C" include file for strings.

2. DIR.H -Kernel "C" file search includes

3. Fcntl.h -Kernel "C" Java file handler header.

4. MATH.H -Kernel "C" Java math function header.

5. Ports.h -Kernel "C" Java I/O port access header.

6. Realtime.h -Kernel "C" Java realtime services header

7. SETJMP.H -Kernel "C" Java setjmp/longjmp declarators

8. STDARG.H -Kernel "C" Java varags declarations.

9. Stdio.h -Kernel "C" Java fileIO declrations.

10. Stdlib.h -Kernel "C" Java library functions

T H E D R I V E V M E E N V I R O N M E N T – F I L E S A N D R E S O U R C E S

Page 20

11. String.h -Kernel "C" Java string functions.

12. Universe.h -Tundra/Newbridge Universe Chip declarations.

13. Tsi148.h -Tundra 148 PCI-x / VME Chip declarations.

14. Vmeints.h -Kernel "C" Java VME interrupt declarations.

• Kernel “C” Interpreter Sample Code files (Open with AssistVME) NOTE:
THESE PROGRAMS RUN IN THE KERNEL UNDER DRIVEVME’S C RUNTIME
ENVIRONMENT. THEY ARE NOT ASSOCIATED WITH THE DLL.

1. ConioDemo.c -Kernel "C" function showing I/O functions

2. demo.c -Kernel "C" VME interrupt demonstration.

3. FcntlCheck.c -Check file for routines in Fcntl.h

4. PortsCheck.c -Checkout program for routines in Ports.h

5. RealtimeCheck.c -Kernel "C" Java realtime services demo

6. StdIOCheck.c -Checkout program for routines in stdio.h

7. StdlibCheck.c -Checkout program for stdlib.h

8. StringCheck.c -Checkout program for routines in string.h

9. UniverseCheck.c -Kernel "C" Java program to check out accessing the Universe
chip.

10. Tsi148Check.c -Kernel "C" Java program to check out accessing the Tsi148 chip.

• Source examples and details relative to writing Windows NT/2000 device
drivers which call DriveVME:

1. DDKDemo.zip -Sample NT kernel driver using Drive/VME

2. dvmeddk.c -sample kernel mode DriveVME device driver

3. DVMEDDK.h -Include file for device driver authors

• Miscellaneous Example and Info Files:

1. DriveVMEReadME.txt – Recent updates and latest news.

2. DvmeMFCDemo.exe -Demo Windows app to catch bus error messages,
sample program

3. DvmeMFCDemo.zip - Sample Source and development studio for ""

4. REMOVE.BAT -Uninstall Drive/VME

T H E D R I V E V M E E N V I R O N M E N T – F I L E S A N D R E S O U R C E S

Page 21

5. TestDriveVME.exe -Console application exercising DriveVME.DLL

6. TstDLSrc.zip -Source for TestDriveVME.exe

7. vmeassist.bat -AssistVME launcher (obsolete)

8. NOTE: Early Xycom emulation libraries are restricted for use on Xycom
hardware only --not currently provided for non Intel platforms.
xvme.dll -N4's Xycom library DriveVME emulator
xvme.exp -N4's export library for ""
xvme.lib -N4's link library for ""
xvmeisr.dll -N4's Xycom library DriveVME emulator ""
xvmeisr.exp -N4's export library for ""
xvmeisr.lib -N4's link library for ""

C H A P T E R 2 . A S S I S T V M E :
Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 22

AssistVME – Your Window on
VME Operations
Once DriveVME is installed and running, most users will explore its abilities using
first by running AssistVME. AssistVME can be launched from the “start” menu
under the “VME Operations” section under “VME Operations Assistance”. In
the sections following this one, it is presumed that the reader is running a copy of
AssistVME (available for free in evaluation mode on the internet at
http://www.n4comm.com).

AssistVME is a graphic user interface Windows program that has many abilities
and purposes, it would be a rare user that requires the ability to successfully use all
of them. AssistVME’s features can be generally grouped into four areas:

1. Local Chassis VME bus exploration & configuration.

AssistVME offers the ability to generate and respond to just about every kind
of VME interaction there is, as well as report on and offer to alter the status of
major system configuration settings, such as whether the processor in question
is the system controller or not. This includes the ability to offer local memory
and resources to other VME bus masters, to become a bus master and access
other VME resources; generate, monitor or handle interrupts and more.
AssistVME allows combinations of access choices to be saved as special
purpose files, which can be emailed and reloaded for diagnostic purposes.
Also, AssistVME acts as the configuration area for VMEDisk, the accessory to
DriveVME that makes Windows/NT “ram” disks out of VME available
memory.

2. Remote Chassis VME bus exploration & configuration.
AssistVME has the ability to reach out over networks to locate systems with
DriveVME loaded and which have set system security in such wise as remote
access is permitted. Nearly all features available to DriveVME users on the
local chassis is enabled from remote AssistVME running systems (which may
not necessarily even have a VME bus, such as laptop computers for
diagnostics, say.)

3. Programmer’s assistance for creating VME operations specifications.
DriveVME offers programmers access to VME resources by reading and
writing from special files. The names of these files are long and specify nearly
everything about the type and nature of the VME transaction desired.
DriveVME even uses this “file” method to report which memory address in
the user’s program space marks the beginning of an array which when

2

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 23

accessed will generate VME transactions of a desired type (the array being
valid only so long as the related file is open). Checks for security and conflicts
with other programs using the VME bus occurs at file open time.

The possibilities and variations of VME access methods are enormous.
AssistVME lets the programmer “try out”, save, email, reload and generally
explore the results of various combinations and selections using rich “property
tab” step by step graphic environment, building the specialized “file name”
required by programs to repeat the successful method. AssistVME even has
the ability to generate a sample program that incorporates the user’s choices
and exercises them, to speed development.

4. DriveVME Kernel “C” Development Environment.
The DriveVME device driver, which runs at the highest available performance
levels of the Windows operating system, has the ability to accept text “C”
programs, compile then to a “P” code then execute them on the fly. The
programs are loaded by “writing” them to a special file, then “run” by reading
the same file handle. Subsequent reading and writing on the file delivers the
running kernel ‘C’ program’s “stdio” print and scan statements, respectively.

AssistVME offers a complete development environment for this facility, with
the ability to set breakpoints, monitor values and set debugging breakpoints.

The Interpreted Kernel “C” environment makes it possible for the
programmer to execute small, highly VME device specific programs at
relatively high speed without writing windows device drivers. Indeed using
the network features of DriveVME, remote systems which may not be
Windows based at all can inject a ‘C’ program directly into the kernel of a
processor on a VME chassis and run it and relate to it remotely.

5. Error Log Review and Monitoring.
DriveVME reports errors and unusual events to the Windows NT Event Log.
However, this log offers limited detail and usability. DriveVME offers its own
event logging service, which offers much more detail about the sources, time
and effects of unusual VME bus related events. Assist VME displays and
manages this log file. Indeed this log file management ability is the only
AssistVME feature enabled in the runtime version of DriveVME.

Each area outlined above is the topic of the sections to follow. The reader will
find it helpful to have a copy of AssistVME running while reading the following
sections.

C H A P T E R 2 . A S S I S T V M E :
Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 24

Local Chassis VME bus
exploration & configuration with
AssistVME.

This chapter will outline how to use AssistVME to manage and explore all aspects
of VME related operations. We presume the reader to be seated next to a running
copy of AssistVME (available for free in an evaluation mode at
http://www.n4comm.com).

When AssistVME first runs, it presents a menu bar, a “tool” bar, then a work area
to hold VME operations windows. By default, the first window to appear is the
log of recent unusual VME events in the VME log.

The VME Operations Log Window

The VME log window will appear automatically when DriveVME detects any
usual event, or when the toolbar that looks like a yellow pencil on a green pad is
chosen, or from the menu entry “Open Operations log” in the “file” menu
section. Entries in this log appear whenever a bus error occurs, a syntax error
relative to DriveVME resources is detected, and other VME related events.

The “File” menu has an entry near the bottom which will erase the contents of the
operations log.

This is the only AssistVME function available in the runtime version of
DriveVME.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 25

VME and PCI chassis configuration

This selection permits the review and change of all major PCI and VME chassis-wide
setup parameters. To bring up this window, choose the “gear” icon from the toolbar
or the “Setup and examine chassis operating procedures” from the “Chassis selection
and setup” menu.

This action brings up the “Configure Chassis Overall Setup” window, in this case for
the local chassis. The window offers three general areas of detail, the first regards the
VME bus and its “system controller” issues, the second applies to those
implementations that also have a PCI bus, and the third for miscellaneous control
items, such as lamp and switch management.

All the settings in this window can be saved in a “document”, emailed to others who
have this version of AssistVME and loaded there.

NOTE: Earlier versions of AssistVME had a bug which attempted to
load versions of these “.vsu” chassis setup and configuration files and
failed, but corrupted the AssistVME program in the process. The
corruption blocked changes in further attempts to set up the chassis. If
you think this is happening to you, use the “find file” utility to scan for
and delete all files with the “.vsu” extension, then reboot. Then, the
chassis setup options will resume normal operations.

- The “Syscon” page: Chassis-Wide VME settings

This page / property-tab of the chassis setup window displays all the information
about the VME interface that apply equally to all programs using the VME bus on this
chassis.

The primary concern of this page is the “system controller” setting. Only one card in a
VME backplane can offer the “system controller” signals and services. Even though
many cards equipped to do the job can be physically in the same chassis, exactly one
must be enabled to do so. Furthermore, the one enabled to do so must be physically
located to the left (as viewed by a person looking at the front of the chassis) of all the
other VME cards that are active in sending signals on the bus. If more than one card
has this facility enabled, or if no card having this facility enabled, then VME
interactions will at the very least be filled with errors.

Most typically, our experience is that when the system controller setup is
wrong, the first attempt to access VME resources brings the system attempting
to do so to a direct and complete lock-up halt.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 26

Various VME interfaces offer the ability to detect automatically whether it ought
or ought not serve as the system controller. Depending on the engineering
agreements relative to the processor card and the chassis vendor, this automatic
facility may or may not work or may or may not be reliable. The section titled
“Overall Chassis Control Services” offers a way to indicate to the hardware
whether it ought to use its automatic system controller setup ability, or whether
software should force the services to be enabled or disabled.
NOTE: Not all hardware vendors permit this to be controlled via software.
Consult your processor manual.

The settings on this page are unique in that they are automatically applied every
system boot.

This page also offers the administrator:
1. a way to tune how long to wait for other systems to respond when this system

seeks to orchestrate which system may issue transactions on the bus [VME
bus arbitration timeout];

2. how long to wait for a reply to a transaction before singaling an error [VME
bus error timeout];

3. on what basis to grant control of the bus when two systems signal their
request to initiate transactions at the same time. “Round Robin” grants
requests to competing systems roughly on the basis that whichever waited
before is first in line. “Priority” resolves control contests on the basis of
cards installed closer to the system controller card first.

Clearly the choices directly affect chassis performance. Accepting the system
defaults is typically the safest thing to do, but engineers who know the timing
specifications of all the cards in their chassis can improve system performance
considerably (particularly relative to the bus arbitration timeout setting).

The page also displays state information relative to all these choices.

- The PCI page: Details about the nature of the VME interface hardware

The majority of this page is given to the display of every available detail about the
nature of the VME related interface chips, particularly in their relationship to the
processor bus. Details about the processor card, the vendor and model, the
revisions of the various chips, their locale on the PCI bus (if any) and more are
displayed. The meanings of the technical descriptions are beyond the scope of
this manual, you can get them from the PCI bus specification documents.

This page offers the ability for users to signal the VME chips that the PCI bus is
capable of dealing with 64 bit VME transactions (PCI64).

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 27

Also, some vendors supply memory or otherwise arrange their hardware so that
the PCI bus generates meaningless PCI bus parity error indications within the
VME bridge chip logic. This page provides a mechanism for DriveVME to stop
reporting those errors after the first 10 are displayed each boot up.

- The Misc Page: Choose lamp and VME reset signaling settings.

Many of the systems DriveVME supports offer front panel lamps and switches,
others offer the ability to control what effect bus or switch signaled reset events
should have. If your system supports these facilities, their default state and effect
can be exercised and set here.

Generating VME cycles for response by other VME cards (other than
interrupts) from the local processor

DriveVME and through it AssistVME offer two general ways to initiate VME
cycles. Both involve specifying the nature of the VME transactions desired. They
vary in the manner by which the actual cycles are conducted.

This part of the manual is addressed to users of AssistVME who wish to
directly work with VME resources. Users will note that beneath all the
“control” areas of the windows that will arise, there is a section with a
very long “file” name that is titled “copy the file name below to access
the resource in programs” or similar. AssistVME users who wish to
probe the VME bus can ignore that section, it is for the benefit of
programmers. That section “captures” all the settings that will be chosen
into a highly specialized “file” name which when opened by programs
will deliver to the programs the desired VME access.

The first approach, known as “file I/O” generates VME transactions as the result
of reading and writing to a file, just like any other file on the system. The benefits
of this approach are that, being a file like any other, the transactions can be
conducted over a network as well as from the local chassis. Also, DMA (direct
memory access) transactions are available, as well as software assisted byte-
swapping and other alignment and formatting options. The penalty of this
approach is that because each request for VME traffic goes through the file
system, there is a considerable overhead placed on each request. Using this
method makes the most sense when the highest available performance relative to
VME transactions is not required, when DMA access is required, when any

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 28

reformatting is required, when networked operations are required, or generally
when the amount of data transferred per request is 1K or more.

The second approach, known as “memory mapped IO” generates VME
transactions as the result of typical program access to the contents of an array.
DriveVME accepts a description of the nature of the VME transactions desired,
then while a special file handle is open places an array into the memory space of
the calling program or device driver. The array has the special property that when
it is written to or read from, the data is not satisfied by local processor memory
but instead is satisfied by VME resources on other cards in the chassis. The
benefits to this approach are that it is easily and by far the fastest way to randomly
access the memory on offcard VME resources. The shortcomings are that this
facility, by its very nature, can not be run over a network – so programs that make
use of it are forced to run on-chassis; if the processor platform provides hardware
“byte-swapping” or “data-lane” swapping, then programs that make use of this
feature can only be run on processors that support it (the file oriented method
does software byte swapping when run on platforms that don’t support it in
hardware); DMA operations are not available to users of arrays; as the program
doing the I/O is typically a user program, it may be swapped out in favor of other
tasks and so the transactions on the VME bus may or may not have the same
timing patterns each pass through the code.

DriveVME establishes all VME resources as having an “IO” nature as opposed to
a “memory” nature. The impact of this choice is that the processor will not
attempt to do “cache line fills” with VME memory, and [generally speaking,
subject to overriding user choices] when a VME cycle is complete from the
perspective of the program it is also complete from the perspective of the VME
hardware (it is not delayed). The benefit is that only the exact transactions called
for on the VME bus will be done. The penalty is that the hardware will not access
VME resources as efficiently as it does local RAM memory.

The AssistVME facilities for both these approaches are similar and will be treated
together.

To set up VME transactions by File I/O, choose the “binoculars” icon on the
toolbar or the obvious choice from the “file” menu. To setup up VME
transactions by memory map, choose the “map” icon on the toolbar or the
obvious choice in the “file” menu.

Note: These choices bring up similar “document” windows that are associated
with files that vary in their extension. File I/O based VME transaction settings
are saved in files with the extension “.vme”. Memory mapped I/O based VME
transaction settings are saved in files with the extension “.vmm”. Once you have
established a group of settings that are satisfactory, you can save them in a file
whose name you choose using the “save” option in the file menu. If you want to

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 29

revisit previously saved settings, go to the file menu and “open” the file containing
the settings you like. This is a powerful diagnostic aid, as settings changes that
have diagnostic meanings can be saved on one system and emailed to other
locations.

Address Space Selection

Both windows first present the “Space” property page. The VME bus offers
many different memory spaces. Reading address “0” in one space will not result
in the same data as address “0” in another. The most typically used VME
“spaces” are “A16” – offering 16 bits of address information, “A24” with 24 and
“A32” with 32. These were generally historically evolved, when decoding more
address lines in hardware called for additional expense, and wiring VME busses
with further connectors was required to offer more addressing. The address space
you require is specified by the settings on the VME resource you with wish to
interact.

Technically, the “space” is signaled on the VME bus by a “user AM” code.
Exotic hardware can operate in its own “space” by specifying an “AM” code
which is otherwise unused. If your hardware requires such, it can be entered
manually on the “space” settings page.

Address Range Selection

Both memory mapped and file I/O methods offer the “Address Range Selection”
page. This page requires that you specify the lowest VME address you wish to
access, then either the number of bytes which follow or the highest VME address
required. Be advised that the VME interface hardware may or may not exactly be
able to match your request, but DriveVME will mask the granularity of the VME
interface. For efficiency in most cases, generally speaking, it is best to make a
single request which specifies the largest range you know will be required for
interacting with a particular VME resource using the same access parameters.
This, over against opening several files that specify small subsets of the same
resource.

There are VME hardware limitations, as well as security as sharing conflicts which
arise when the range specified is too broad. In particular, do not specify the entire
address space on the theory that you’ll rummage around and thereby “find” the
resource you desire. Should any other VME program be running, such broad
requests will be denied as they would conflict with sharing constraints arising from
previously loaded and running VME related programs.

DriveVME has chosen 768 megabytes as the largest single range that can be
mapped into a user memory array. If your need to map VME memory into the
processor space is larger than that, you’ll ha ve to open more than one file at the

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 30

same time to see it. Programmers that are using AssistVME to aid their VME
access specifications can cause the array to be broken into “banks” of specified
size, then by issuing DeviceIO calls to the control “file” select which “bank” is
available to the program- that is handled in another part of this manual.

Width per Transfer

Most take it for granted that the size of the data to be read or written will be the
amount fetched. That is not the case. Some VME hardware will only respond to
requests for data that deliver 8 bits at a time. Others just 16 bits, and not 8 or 32.
Some VME chassis can not handle requests for data larger than 16 per request.
This property page allows the user to limit the largest amount of data that can be
passed per request. If you choose to limit the data to 8 bits per request, and then
in your software do a 32 bit read, the hardware will generate four separate VME
cycles to accomplish it. There is no way for the processor to detect the limitations
of the device you wish to access. You must set this parameter with some care.

Generally it is best to select the highest width per transfer the VME resource you
plan to access will permit.

Setting the character and security relative to READING from the VME
resource

The “Read” property page offers the ability to set whether when initiating
transactions which fetch data from other VME resources into the calling program,
those transactions will be set as “Non-Privileged” or “Supervisory” VME cycles,
or whether reading is disabled altogether and the resource to be made available is
for writing only.

Within the typical A16, A32 and A24 address spaces, the VME bus allows transfer
cycles to have either a “Supervisory” or “non Privileged” character. Hardware
resources may be set to respond only to supervisory cycles, or non-privileged
cycles, or both. Choose what is appropriate to your hardware.

Furthermore, DriveVME users must specify the extent to which the specified
range in the specified address space may be also made available FOR READING
to other programs on the system. You can limit the range to be available only to
the thread of execution that opened it, or any thread of execution that is part of
the opening thread’s process, or open to any other in the system. Furthermore,
you can specify that the particular range only be available to kernel mode device
drivers (protecting it from all user mode programs), or only the particular kernel
mode device that opened it. Also available is a diagnostic mode that bypasses
security settings (except user / kernel differences). This mode allows diagnostic
engineers a way to “peek” into the operations of programs under development.
(Finished programs can choose to cause diagnostic access to be blocked).

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 31

Setting the character and security relative to WRITING to the VME
resource

The “Write” property page offers the ability to set whether when initiating
transactions which put data into other VME resources from the calling program,
those transactions will be set as “Non-Privileged” or “Supervisory” VME cycles,
or whether writing is disabled altogether and the resource to be made available is
for reading only.

Within the typical A16, A32 and A24 address spaces, the VME bus allows transfer
cycles to have either a “Supervisory” or “non Privileged” character. Hardware
resources may be set to respond only to supervisory cycles, or non-privileged
cycles, or both. Choose what is appropriate to your hardware.

Furthermore, DriveVME users must specify the extent to which the specified
range in the specified address space may be also made available FOR WRITING
to other programs on the system. You can limit the range to be available only to
the thread of execution that opened it, or any thread of execution that is part of
the opening thread’s process, or open to any other in the system. Furthermore,
you can specify that the particular range only be available to kernel mode device
drivers (protecting it from all user mode programs), or only the particular kernel
mode device that opened it. Also available is a diagnostic mode that bypasses
security settings (except user / kernel differences). This mode allows diagnostic
engineers a way to “peek” into the operations of programs under development.
(Finished programs can choose to cause diagnostic access to be blocked).

Notes and Read and Write Security:

The reading and writing security settings can be set separately, for example if your
resource has “non destructive” reads (reading doesn’t change anything about how
the resource does what it does) you might permit any thread to open the range for
reading but only yours for writing.

In any event, if your AssistVME use (or calling program) attempts to access a
VME resource that runs afoul of a previously open and granted request, the
attempt will fail and a note as to the nature of the conflict will appear in the VME
operations log window.

The VME Cycles page: Setting the timing and nature of the transactions

This page requires that you specify how the transactions, and in particular groups
of transactions will be undertaken.

The VME bus separates all transactions into “program” and “data” styles. Your
VME resource might be set to respond only to “program” transaction, or only

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 32

“data” transactions, or possibly both. If in doubt, choose “data”. Consult your
hardware documentation for details.

When writing to the VME bus, you may elect to cause your program to wait and
to not return until the write cycle has been completed successfully: “coupled”
cycles. Or, you may elect to have your program return immediately upon handing
the data to be written off to the VME interface: “posted” writes. Posted writes
are faster, coupled writes give you finer control over transaction timing.

Alignment

The cycles page gives you the ability to have the software (in file I/O mode) (or
hardware if so equipped in mapped mode) “reassemble” the results of “unaligned”
transfers. A transfer is said to be “aligned” if the starting address for the
transaction divided by 1 for 8 bit transfers, 2 for 16 bit transfers, 3 for 32 bit
transfers and so on is even. All 8 bit transfers are aligned. Some hardware
resources will fail to operate correctly when transactions are not aligned. (For
example reading 16 bits starting at offset 1 is not aligned). Other VME hardware
may split unaligned requests for data into multiple aligned transfers.

This comes into play mostly when accessing parts of packed structures via
stretches of memory maps provided by offboard resources. DriveVME’s file I/O
methods offer internal realignment. The best way to really understand how this
impacts your application is to experiment with it.

Chances are that if your application is the typical one which accesses particular
hardware registers on VME resources, the registers themselves are set to be
aligned by the hardware design engineers so this section doesn’t apply to you-
choose the “hardware default” option as this is the fastest.

Multi-Byte transfers

When reading (more typically writing) consecutive addresses, the VME bus
permits the address to be specified once, and following that successive data cycles.
This, over against an address cycle followed by a data cycle – requiring more time.
ONLY IF the VME resource to be accessed has the hardware to support and
decode multibyte transfers, enable this setting.

Byte Swapping

The VME bus and Intel platforms historically chose to understand differently
which byte of stored numbers that required more than one byte represented the
least significant part. Intel platforms chose the lowest byte to be the least
significant part, and the following bytes to be the representation of the higher
values in the number. Motorola and its earlier and deeper ties to the VME world

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 33

chose to have the representation of the higher parts of numbers first, then the
lower.

So, when dealing with data that requires more than one byte to store, the question
comes: do the bytes need to be swapped? Sometimes, your VME resource will
handle this for you, most often it won’t. If the data you are moving is not
multibyte in character or your processor is both the source and user of the data
then perhaps this issue is moot to you. Some processor vendors supply hardware
that will swap the data for you so that you can access memory via memory
mapped arrays and the reads and the writes will appear correctly on aligned
transfers. DriveVME’s File I/O methods always provide this service even if the
hardware does not.

One drawback to using the hardware assisted methods in a memory mapped array
is that most often the selection of hardware assisted byte-swapping requires that
ALL concurrent use of the system enable that featrure also – or fail to run.

N4 suggests that users of the memory mapped feature do not request
hardware assisted byte swapping and instead accomplish the needed
transformations in their own logic – if they desire to have their software
run generally in a platform independent way alongside other programs.

In any event, use this section to indicate if you want DriveVME to swap the bytes
in 16, 32 and 64 bit transfers. Note that choosing ‘yes’ has interactions with
software assisted unaligned transfer detangling mentioned before. Also, be
advised that requiring byte swapping to occur in a memory mapped request will
fail on those processing platforms that do not provide hardware assisted byte
swapping features. File I/O requests for byte swapping will always succeed.

In all our experience about this tangled byte swapping issue, the best
advice we can offer is that only experimentation yields the proper choice for
any individual application.

VME Request Level

Most modern VME system controllers will grant requests at higher levels to
devices seeking to initiate VME transactions than simultaneous requests at lower
levels. However, some system controllers ignore this feature and only respond to
requests at level 3. Choose according to your hardware.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 34

VME Request Mode

In “Fair” mode, the processor will not attempt to gain control of the VME bus to
initiate the cycles until the bus is free. In “demand” mode, it will assert its request
immediately and let the bus priority logic in the system controller resolve conflicts.

- The Bus Settings Page

This is the last page that is really common to both the File I/O and the memory
mapped access section. It’s purpose is to set how long the local processor can
control the VME bus during multi-cycle transfer requests before letting others
have a chance before resuming.

Bus Release and Execution Priority

The default setting will cause the local processor to release control of the VME
bus when any other system asks for it, and, for File I/O requests will run the
process that does the transfers at a priority that is above user mode tasks but
below all other system functions. This is the default.

The next setting will not release the VME bus until the transfer is done, but
nevertheless will run the task at a priority above user mode threads but below
system functions and other hardware events. (The execution priority only applies
to the File/IO requests once control has been passed to DriveVME via a file read
or write call, memory mapped transfers happen at the priority of the user’s or
kernel thread).

The next setting locks the VME bus to the calling program for the entire duration
of the transfer, and conducts the transfer at a priority that can only be minimally
interrupted long enough to handle other higher priority system hardware
interrupts in the most minimal way possible (no post processing of the interrupt
implications).

The next setting is like the previous but does “Address on Hold” cycles. If you
don’t know what this rare and complex use of the VME bus means, it is nearly
certain this facility will be of no importance to you.

The next setting locks the VME bus to the caller, and virtually dedicates the local
processor to accomplishing the VME transaction (File I/O mode only). No
interrupts are acknowledged (except NMI) and essentially everything is put on
hold until the transfer is complete, then the bus is released.

The last setting is like the above but with ADOH cycles.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 35

VME Cycles Per I/O

This has the most meaning to File I/O and particularly DMA operations, but can
apply to block-copy posted writes from memory too. Here, the user can set how
many cycles the VME controller will execute before turning control over to any
other VME device requesting control. Whereafer, the local hardware will resume
the transfer.

Direct Memory Access

This feature is only available in File I/O mode and only has meaning when the
program is running on hardware platforms that permit the VME interface chip to
generate memory cycles on the processor side and ferry them over to the VME
side without software intervention each cycle. On systems so equipped, this is the
fastest way to move blocks of data across the VME bus. It is also known to have
the most problems from a hardware perspective, early Universe chip based system
should be very certain of the hardware errata and limitations associated with this
feature. The benefit to using this method is the speed of the transfer, the penalty
is the amount of time it takes to set up the chip to do it. Short transfers almost
never benefit. Note: Some VME interfaces feature DMA that does not alter the
VME address during DMA transfers (the VME source/destination location does
not change, but the processor side destination/source does). As of V3.12b
DriveVME does support this optional feature.

Note: DriveVME does not make any attempt to mask hardware errors in
DMA operations. If the hardware DMA logic is known to transfer other
than the intended data to the intended destination at the intended time,
DriveVME assumes that the user is aware of the issues and will program
their device accordingly.

Block Debuggers Access

Earlier it was noted that a person could specify their use of AssistVME as being in
the role of a debugger. This would allow a user to manually “peek” into the
operations and address spaces and ranges of programs that specifically requested
such operations be blocked. Should a programmer become confident enough
about the operations of his logic so that even those specifying that they are
debuggers be also not permitted to override their sharing selections, this option
permits that choice to be expressed. Note: Kernel mode threads specifying they
are debuggers are always granted access to any user mode thread.

For those generating VME cycles via File I/O operations Only: Read-
Modify-Write Settings.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 36

The VME bus provides in hardware a method for establishing multiprocessing
sequencing called “read modify write” cycles. This amounts to a fast way for a
processor to make a change in a memory value and to signal to other processors
that it has done so and to know that during the attempt to so signal whether it was
or was not successful over against other processors or processes on the same
processor attempting the same thing at the same time. This is one of those
occasions that if you need these feature and know what it means, the screen and
option available to file I/O mode users will explain itself, and others need not
concern themselves about it.

Options exist to do ADOH cycles on writes and RMW on reads, or RMWs in
both cases. Also retention of the swap value is available.

Note: On hardware platforms where Read-Modify-Write cycles are not available in
Hardware, DriveVME locks out all other processing on the platform, locks the
VME bus to the local processor, accomplishes in software the hardware effect,
then releases the VME bus, then resumes normal processing.

VME BUS ERROR HANDLING

Both File I/O users and memory mapped users may encounter VME bus errors.
A bus error occurs when the calling computer generates a cycle and there is no
response within an amount of time set on the configuration page – or the
response is muddled by hardware conflicts or other problems.

The most frequent cause of VME bus errors is an attempt to access a VME
resource using incorrect address space, data width or other settings.

The second most frequent cause of VME bus errors occurs on chassis that
require manual jumper settings on the VME backplane that do not match
the installed hardware.

DriveVME offers various methods of reporting and handling bus errors for their
transactions, including ignoring them. Users can cause a message to appear in the
VME operations log, send messages to their windows programs, abort the File
I/O based transfers and report error conditions in the typical way that errors
reading and writing files are reported, make programmatic calls to count how
many errors have occurred globally on the system as of the time of the call or do
none of the above.

Note that not all methods work on all VME interface implementations, and some
indications of errors that work only some time after the failed cycle in question
occur. DriveVME exploits in a maximum way all available error detection and
reporting logic offered by the hardware vendor. Consult your hardware vendor for
VME error detection logic supported by your hardware.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 37

VME Transactions Via File IO Only: VME “Seek” Control

When generating VME transactions by reading and writing a file, it is possible to
“seek” to any offset in the file so that the subsequent read or write will occur at
the desired offset from the VME start address offered by the chosen and opened
file. Some applications use files in such a way that they always issue seek requests
of the same sort after every transaction. This section automates that procedure—
saving the time required for the program to carry out “seek” operations. The
options are:
1. To treat the “VME file” normally, causing an “EOF” end of file indication at

the end of the range (the default).
2. To automatically act as if a “seek” to the beginning of the file was issued after

every transaction. Useful when the range specifies a set of registers always
read or written as a block from the beginning.

3. To make the file effectively endless, by “seeking” to the beginning
automatically when the highest transfer in the range occurs. Useful when the
range is read and written in the same pattern but a single transaction ought not
cover the entire range.

VME DIRET DATA FORMATTING FOR WORD PROCESSORS,
SPREADSHEETS AND DATABASE PROGRAMS (File I/O VME
Transactions Only)

This page offers the user a way to cause the raw VME data to be automatically
formatted to the specs needed for easy viewing or use by spreadsheets, databases
and word processors. Once all the other information is correct, the user can set
this feature to cause the data from the “file”, the name of which is being built in
the window below all the selections mentioned above, to provide VME
information exactly in a format readable by high-level user programs.

This feature is very useful for data logging applications and others that want to use
a Windows processor to “peer” into and collect information about ongoing VME
operations. Or, any other application that calls for quick and ready access to
VME operations without the need for systems level programming.

The first choice in this window is to choose the general data format desired. The
default is one-to-one binary format (a byte read from the file is exactly the byte
which comes from the VME resource at the given offset into the file plus the start
address of the file name range (see above).

Other choices include a read-only “pretty print” format for debugging, showing
the range, the values in hex and their ASCII printable equivalents; signed and
unsigned decimal values, and hexidecimal.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 38

The next section allows the user to specify how wide the data is. The user can
choose to have one, two, four or eight bytes of VME data to be combined into a
single value.

The user can choose to separate data with a space, a comma then a space, or to
run it all together.
The user can choose whether to end the line after a set number of characters per
line with an LF/CR combination or to let it go on with no line breaks.

Files so specified can be both read and written, except for the pretty print format
that is read-only. Some experimentation to see which mode suits your application
usually results in the shortest time to a working project.

TESTING YOUR VME TRANSACTION CHOICES

This page permits you to explore the accuracy and effects of all your prior choices
by generating VME transactions.

Note that if your system does not have exactly one properly functioning
system controller installed in or to the left as you look at the front of the
chassis of your processor card, it is likely that the first test you do will cause
your system to simply lock up until the power is cycled.

The left hand top box on this page permits you to specify a VME start and stop
address, and if writing a single value to the entire range what that value is. To the
right is a button which reads the range from VME, depositing the results in the
edit window pane beneath the page. Below that is a button which attempts to
read the values in the edit window pane and write them to VME. The fill button
writes the value in the “fill” box to the entire range without changing the edit
window pane’s contents.

Below these buttons is a section which causes the system to act as if the read or
write button, or both, were pushed repeatedly at an intervals you specify. This
makes testing easier for those who have bus analyzers and in other situations.

To the right of this VME range oriented read/write section is a section which
offers the ability to generate exactly one VME cycle at the address you specify,
depositing the read result in to the little box in that window or writing to VME the
editable result held there. This facility is usually the first stop when testing a
VME range selection.

DISPLAY-ONLY SOFTWARE BYTE SWAPPING VME ACCESS VIA
MEMORY MAP USERS ONLY: The “software byte swapping” button will
cause the information in the window displayed to be “byte swapped” just prior to

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 39

display and “byte swapped” back just prior to writing to VME, for diagnostic
purposes. This only has meaning when doing 16, 32 or 64 bit transfers.

“NOTEPAD” ICON VME ACCESS VIA FILE I/O USERS ONLY: The
“Make Icon” button will create a Windows “shortcut” file which when chosen will
cause the windows “notepad” application to display the content of the pseudo
“file” which really is the VME range chosen according to the selected formatting
and display. (Be sure not to have selected the “endless seek” option or the
application load will fail as the “file” has near infinite size).

Benchmarks and Testing

Assist VME has built in routines to time the reading and writing of data according
to the selections chosen and to display the results. A great many choices go into
how the system performs, many of which can be specified in DriveVME, but
many of which can only be specified in the BIOS relative to how long the VME
interface chip can use the PCI bus at a go. This section permits the user to
specify whether reading, writing or both should be tested, and the various data
widths to use. The results are displayed in the editable window pane beneath.

Note: in order for these tests to be meaningful, there must be hardware
supporting registers at the VME addresses specified in the range that can be read
and written without harmful effect, and if both read and write tests are enabled,
the data read must faithfully reflect the data written.

ASSIST-VME SOFTWARE CREATION ASSISTANCE PAGE

Once you have made and tested your choices for initiating VME transactions, the
options on this page are designed to make it easy for you to see how these choices
can be incorporated into programs by actually writing a sample working program
that uses your choices for you. These programs function without using
AssistVME, indeed AssistVME doesn’t even need to be included on systems for
these programs to work (except for error log reporting).

You can choose the button marked to have AssistVME write a program for you
that stands entirely alone, making use of nothing except the DriveVME device
driver to effect your choices.

Also, you can choose to store your choices under a “key” whose name you
provide, in the registry. Different implementations of the same VME program on
different chassis might require VME resources to be located and addressed
differently. Programmers can specify their resources only as named “keys” so that
field installation staff might be able to reconfigure chassis and update appropriate
key values without forcing changes to compiled programs (possibly from
previously stored AssistVME .vme or .vmm files created using the above

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 40

information, saved then emailed for the purpose). La stly, programmers can cause
AssistVME to create a program that demonstrates how the named key might be
used.

VME resource backed, network shareable “RAM” Disk Drives

The controls on the right of the software page permits the user to cause the
specified VME range to be treated as memory-- causing a standard, network
sharable Windows disk drive to be created that uses that range, accessed in the
method specified earlier, as the off card memory store that supports it. This uses
the VMEDISK.sys device driver once sold separately but now supplied standard
with DriveVME. Many such “drives” can be created and be functioning at the
same time.

To review and manage which local RAM disks are associated with what memory
resources, choose the blueish toolbar icon to the right with an image of a disk and
the letters VME on it.

-- This ends the section describing how to use AssistVME to generate all
allowed VME transactions other than interrupts. The sections which
follow describe how to offer local processor board memory and other
local processor resources as targets for cycles generated by hardware on
the VME bus other than the local processor; how to generate, handle and
monitor interrupts, and how to develop ‘C’ programs for VME
operations that run in the kernel of the Windows OS. --

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 41

Offering Processor Card Resources to Other VME Bus Master-
Capable Cards With AssistVME

You can offer the resources of the VME chassis processor to other VME
resources by choosing the toolbar icon that has an arrow pointing to “VME” or
by the obvious choice in the “File” menu.

ADVISORY NOTE: Certain hardware platforms that include the
Universe PCI-VME interface chip fail to concurrently handle VME – to
– PCI and PCI – to – VME transactions in very special occasions. The
problem arises when a PCI bus owner requests a coupled VME
transaction while a different card owns the VME bus and is requesting
resources from the PCI side. Typical conflict resolution logic fails on
these systems and the usual result is that the VME transaction ends in a
bus error and the PCI side ends in an abort. This problem can be
avoided by:

1. Not offering local processor resources to VME bus masters.
2. Not initiating VME cycles while offering local resources.
3. Only during the times the local processor is offering VME resources,
locking the VME bus to the local processor before initiating VME cycles,
then releasing it.

By the time you read this, other solutions and hardware upgrades may
have occurred. Contact your processor vendor for details. DriveVME’s
file I/O initiated VME cycles are sensitive to this problem and only on
susceptible platforms lock the VME bus to the processor during
transactions when local resources are exposed to off-card VME bus
masters.

Resource sharing specifications generated in this section can be saved in files with
the extension “.vsl”. These files can be sent to other systems and used for
diagnostic procedures. See the “Open” and “Save” and “Save as” entries in the
“File” menu.

The usage of this window is a matter of working through the property tabs and
making specifications from left to right. The process ends in a resource being
available to other processors on the chassis in question. During the process of
specifying a resource to share, you will note a long file name being built in the
window below. This is used by programmers to cause the resource to be available
under programmatic control, mapping the resource into the user’s memory space
as well as being able to read and write to it by the usual file handle methods (the

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 42

consequence being that network remote offcard computers can cause DriveVME
enabled processors to offer VME resources, fully supporting networked
applications).

The property pages to consider when offering VME resources are:

Sharing Address Space Selection

The first page is the “Space” property. The VME bus offers many different
memory spaces. Offering a resource at address “0” in one space will not result in
the same data as address “0” in another. The most typically used VME “spaces”
are “A16” – offering 16 bits of address information, “A24” with 24 and “A32”
with 32. These were generally historically evolved, when decoding more address
lines in hardware called for additional expense, and wiring VME busses with
further connectors was required to offer more addressing. The address space you
offer is specified by the settings on the VME resource you with wish to interact.

Technically, the “space” is signaled on the VME bus by a “user AM” code.
Exotic hardware can operate in its own “space” by specifying an “AM” code
which is otherwise unused. If your hardware requires such, it can be entered
manually on the “space” settings page.

VME Address – where your resource is to be offered in the selected space

Whatever resource you choose to use, you must locate it somewhere in the VME
address space you have chosen. This page allows you to specify whether you are

1. Indifferent to the VME address chosen (allowing the computer to choose it

will assure it does not conflict with any other resource in use on the processor,
the system offers a way to detect what VME address it selected).

2. Wish the VME address to start at any multiple of the local processor’s
memory plus an offset you choose (compatible with older designs).

3. Wish the VME address to start exactly at the VME offset you specify (least
compatible, generally safe with modern designs).

Note that the system may indeed be forced to offer more or consume more VME
address space than you specify here if the hardware’s ability to offer resources is
not able to align itself evenly with your choice. For example, if you wish to offer
VME resources at VME offset 7, it is almost a certainty that the system will assign
resources starting at VME offset 0 – while reporting to your applications the
proper local address which cooresponds to VME offset 7. The actual addresses
assigned and used are also available.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 43

Local (usually PCI) address specification page: naming the resource to be
offered.

This page allows the user to specify what local resource is being offered. Note
that not all hardware platforms can offer this wide a variety of resources. Nearly
all can offer local processor memory, beyond that you must contact your
processor vendor. Available resources are:

1. Addresses in the local processor’s I/O or input – output space (that is, not

memory. This allows VME resources to directly control local ISA and PCI
devices such as serial ports, etc. Use with great caution.)

2. Actual, specific PCI memory addresses, above the range used by Windows.
This feature makes it possible to offer the memory windows of memory
mapped PCI devices. This is usually not used for sharing local processor
RAM.

3. Windows offers the ability to require it to operate in less than the total
available local memory. The physical local memory above that limit can be set
aside for DriveVME’s sharing with VME cards. The advantage is that
Windows does not maintain large stretches of consecutive non-paged memory
suitable for sharing with VME within its own managed space (it does maintain
a small pool of such, however). This option allows the user to specify
particular addresses in the local memory range above where Windows is
permitted to operate. As there is usually no advantage to specifying these
addresses, it is best to not choose this option without good cause.

4. This option is the preferred option. DriveVME manages the physical memory
beyond the assignment of Windows, and will assign a free address block of
suitable alignment and size to meet the need of the request, reporting the base
address to the user at file open time. If there is no memory set aside for
DriveVME above Windows, then the system will attempt to use memory from
small NT “nonpaged system memory pool”. Sharing requests in the low
hundreds of kilobytes or less are usually successful, beyond that you should
limit Windows and assign free memory above it to DriveVME (see below for
how).

5. This option exposes the entire local VME interface control registers to the
VME bus. Essentially it offers VME users the ability to completely assume
control of local operations. Use with caution.

6. Some VME interfaces offer a “Location monitor” – VME addresses which
when accessed by offcard VME bus masters generate a local interrupt – only
on the local system and not bus wide. This offers those addresses to offcard
VME masters. (See the interrupt handling section for more detail on using
this facility).

To the right of the specification control is the section for specifying how many
bytes are to be offered to VME, and if applicable to the type of resource being
offered, a place to specify the start address.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 44

Reserving Large Amounts (>1MB) of local RAM for VME Sharing.

Windows can be instructed to operate in less than the total available RAM, the
“top end” remainder can be offered to VME resources. The section on the
“Local Address” page lower to the right allows you to specify how much memory
the system has altogether, and how much ought to be reserved for DriveVME.
This makes changes to the windows “Boot.INI” file on the Windows startup
drive, the settings don’t take effect until after the system has been restarted.

The Offered Resource Security Page

The VME bus offers a distinction between “Non-privileged” and “Supervisory”
requests. You can choose to have the region previously offered respond to either
one or the other or both of these types of requests. If in doubt, choose both.

Furthermore, the resource you offer to share to VME bus requestors your system
also can access by both the convention of a locally mapped memory array, or by
reading and writing the file handle associated with making the request to share the
resource. This page offers the ability to limit what other processes and threads
might also be allowed to share the same VME range and space and / or the same
specific local addressing. The resource can be set to be shared by none but the
opening thread, any thread in the opening process, any process in the system, or
only kernel-mode device drivers.

Two special options exist, one is claiming that the opening requester is a
“debugger” and therefore asking DriveVME to overlook usual conflict security
issues and permit “peeking” into presumably the ongoing operation of another
program. The other reserves what ought to be an entire range of addresses in one
block, so that the physical resources that manage the VME sharing will be set to
offer the entire scope, in anticipation of smaller requests for subsets of the same
scope to follow.

DriveVME does its best to coalesce like requests for sharing resources (and
initiating cycles too, for that matter) in ways that most aggressively conserve the
VME interface’s ability to satisfy a broad range of mixed requests. This last
mentioned facility amounts to little more than a “hint” by the user that many small
requests for sharing a larger range of like kind will be forthcoming. Making
requests of this kind, when it is known that smaller requests inside the same scope
will follow, make it more likely that the physical limited hardware that makes the
resource sharing possible might more likely be able to meet the need of the
application.

Lastly, offering local resources has many stability and security implications.
System administrators may wish to limit the ability to offer local resources to
kernel mode device drivers, or to disable any such doing whatsoever. It is possible

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 45

to signal this desire by making the choices available on this page. So long as the
file handle containing those choices is open, no other will succeed.

Choosing To Which VME Cycle Types to Respond

The “Cycles” page permits the specification of whether the previously identified
resource should respond to VME “program” or “data” style cycles, or both. The
VME bus maintains a distinction within the typical address spaces (A16, A32,
A24) of requests with a “program” attribute and others with a “data” attribute.

This page also offers the ability to instruct the system to signal to the VME bus
that writes to the local resource have completed when in fact they are in a queue
waiting to actually occur on the local side, or whether the VME resource be made
to wait until the local side has actually completed the physical write.

Some systems offer hardware byte swapping “on the way out” on offered
resources, if your system affords this option and your system requires you may
enable it on this screen. Read the treatment in the Initiating VME cycles section
far above for more detail on the causes and implications of byte swapping. Note
that this has no effect on how the local resource behaves locally, just how the
VME requestors see the local data.

The local system can respond to VME requests by anticipation, prefetching them
from local memory and making them available more quickly to anticipated VME
read requests. This makes for the possibility that the local processor might write
a value to a register before a VME device asks to read it but after it was prefetched
into the VME interface queue. On the other hand, the VME reading operations
go faster when prefetching is enabled. (Note: If the resource being shared is
anything other than RAM memory—DO NOT enable prefetching).

When an offboard resource seeks to execute a VME “Read-Modify-Write” cycle,
it does so because it wants to be assured that no other device whatsoever can slip
and to access the location being updated during the process. If the local processor
is not part of the critical timing issues being arbitrated, it is a good idea to not
force the local PCI or system memory bus to also be locked during the operation.
If, however the local processor is a party to the arbitration consideration, then you
should choose to lock the local PCI bus during VME Read-Modify-Write cycles
so that the local processor does not execute cycles at the same time as VME
resources resulting in both concluding a resource is either unavailable to both or
available to both at once.

Last on this page, when your program is well and truly debugged, and if you are
worried about other processes or AssistVME users wandering around your
offered area posing as debuggers, you can specify that debug attempts to co-offer

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 46

the same region ought to be allowed only if any other request would also be
allowed.

The “Bus” page- How to handle local accesses to the shared resource via
I/O to the open specification file handle.

As a matter of procedure, AssistVME actually offers the resource in the same
fashion as any other program using DriveVME would offer one, by opening a file
with a special name on the “V” drive. When that occurs, reading and writing to
the file update the contents of the shared resource, seeking in the file positions the
offset into the shared resource of the subsequent read or write.

At the same time, once a file handle specifying a sharing is open, the resource is
mapped as an array into the local memory space of the calling thread (or kernel
memory space if the caller is another device driver).

While only limited restrictions discussed above can be placed on how offcard
VME resources access the resource, and none can be placed on how the local
resource is affected by access to the local array, DriveVME offers the ability to
impose some consistency synchronization between local and offcard VME
requests.

Sometimes it is necessary to know that during the period of a read or a write to a
local resource, no VME device will be also able to read or write that resource.
(That is why under the file I/O method for initiating VME cycles to offcard
resources it is possible to lock the VME bus to the local processor for the
duration of a transfer.) This page lets the user specify at what priority reads and
writes to the local device occur, and whether the VME bus ought to be locked
entirely during that time so that no offcard updates can occur during that period.

Note that locking a bus is a serious business, directly affecting at least VME
performance. No transactions can occur on a locked bus – none at all, between
any two cards. Generally, if it is known that only one process on the local
computer concerns itself with a particular resource, it is better to update the
resource as much as possible using the direct array, and then just updating critical
synchronization sections using the File/IO method with the bus locks.

Handling Local Bus Errors Caused By Offcard VME requests

The “errors” page allows the user to specify what to do in the event an offcard
VME request generates a local system bus error. This almost never arises when
the shared resource is local memory. However, when sharing physical devices
which may or may not respond to the VME chip’s request for local traffic, or local
requests to access the shared resource, local bus errors may arise. The handling
options presented on this page mirror the options discussed in the “errors”

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 47

section relative to generating VME cycles for other resources to handle as
discussed above.

The Testing Page – Actually Offering the Local Resource

This page functions identically with the testing page as described in the section
relative to generating VME transactions in the previous section, with one
difference. The specified resource is shared only when the “file” whose name all
the other choices have been specifying, is open. This page presents the ability via
a button to hold the file open, and thereby actually share the resource, for any
desired duration. During the time the special file is held open, the user may
schedule periodic reading and writing, do occasional probing of contents, and read
/write and accuracy benchmarks.

Automatically Generating Software that Shares a Resource

The last property tab in this section is exactly like the matching tab discussed
under the section relative to initiating access to offcard VME resources. Buttons
are available to cause AssistVME to generate example software in various modes
that exercises the particular choices set forth previously as an example to further
programming by the users.

Creating a “RAM” Local Disk Drive that is also shared with VME users.

Like the ‘software’ page under initiating VME cycles, it is possible to cause the
locally provided memory resource to be used by the operating system as a
complete disk drive, and so sharable over a network like any other, while at the
same time offering access to the memory shared to offcard VME resources. To
review and manage which local RAM disks are associated with what memory
resources, choose the blueish toolbar icon to the right with an image of a disk and
the letters VME on it.

Except for using local resources instead of offcard VME resources, the operation
is the same as described in the cycle initiating section described above.

This ends the section discussing how to offer local resources, other than
interrupts, to offcard VME resources. The next sections take up
generating and responding to interrupts, and following that a ‘C’ language
development environment for generating VME related programs that
run in the kernel mode.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 48

Responding to VME Interrupts through simple File Operations.

DriveVME makes it possible for user programs to avoid the overhead of running
an entire dynamic linked library to handle as many as a few dozen VME interrupts
per second. The method of handling interrupts involves the typical operations
that are well know relative to opening, closing, reading and writing to files. As
such, it is possible for programs that are running over a network to respond to
interrupts and other events on network-remote processors—even network remote
systems that are not even running Windows!

This method is also appropriate to users who simply want to wait for an interrupt
to happen, then read a chunk of information into a spreadsheet or database
program. No high performance software overhead, rapid development is a plus.

AssistVME provides a toolbar icon that has the letters “ISR”, or an equivalent
“file” menu entry titled “User mode interrupt and event handling”. These bring
up a document window that allows choices to be expressed, tested and saved with
files bearing the extension “.vmh”

The first order of business is to use the pull-down box to select which VME event
is of interest. Beyond the normal 7 VME interrupt levels, there are system status
change events, “mailbox” events and others. The event of interest will be
determined by knowledge of the hardware the program is looking to that might
generate the event.

VME interrupts on levels 1 through 7 are not “bare”, the device that generates
them provides a value between 0 and 255 to the system that responds to the
interrupt. You can choose some or all of this range to trigger your particular
response. DriveVME may have been instructed to cause many events to occur
when an interrupt with a particular value on a particular level happens. So long as
at least one event is set to handle an interrupt on a given level, the local processor
will signal its “handling” of all the values that are associated with that interrupt.

Note that this basic method of interrupt handling (DriveVME offers many others)
presumes that the interrupt is of the variety that ceases signaling the interrupt
when the processor responds to it, and does not continue to signal the interrupt
until after such time as offcard registers are manipulated.

In any case, you can choose to arrange matters so that the request to “open” the
file containing all your specifications does not complete until after the desired
event occurs. Or, you can set the system to open the file right away, then delay
responding to requests to read the file until either too much time passes, or the
desired event occurs. Windows GUI programmers can cause DriveVME to issue
a “windows message” to their process’ event queue with a particular value

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 49

whenever the event of interest occurs, so long as the requesting pseudo “file” is
held open.

The page also provides buttons which test waiting for the desired event, and
buttons to generate programs which demonstrate using the facility with the
chosen options in a program (with the “dll” options just as in the previous
sections to do with generating VME cycles and offering local resources to respond
to other VME bus masters.)

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 50

GENERATING VME INTERRUPTS VIA ASSISTVME

The toolbar icon with the arrow above the word “int”, and the file menu option
“Generate interrupts” brings up a dialog box. Unlike other options, this box does
not create templates for programs nor puzzle through many VME options. It
permits the user to directly cause the system to generate a VME interrupts.

The dialog box has obvious controls which permit the user to generate VME
interrupts on levels 1 through 7, and to allow the user to specify a value between 0
and 255 to offer to the system which responds to the interrupt. Note that some
systems ignore the lowest significant bit of the value you intend to offer, instead
setting it to a 1 or 0 to signify whether it was the local system that generated the
interrupt or not.

The dialog box offers the ability to manually fire off an interrupt, or to cause
interrupts to be repeated at intervals you specify.

Lastly, to the right of the controls for each interrupt level is a tally of how many
interrupts were generated and handled properly by the VME chassis (whether
interrupt service routines on the local card or another card in the chassis). A little
box describes the state of whether the current interrupt has been issued, is waiting
to be issued or is expecting a reply.

Note: Some VME platforms can handle the generation of more than one interrupt
on more than one VME level at the same time. Other platforms can only manage
to issue interrupts serially, requiring that one be acknowledged before offering the
next one. DriveVME does its best to mask these hardware differences,
nevertheless users with time-critical applications ought to be aware that depending
on the hardware platform, there may be a delay between the time the software
signals an interrupt and the hardware actually issues it.

Note also that there is no basic file oriented facility to issue VME interrupts.
Issuing interrupts can be accomplished through use of the dynamic link library for
user applications, or through the “kernel ‘c’” setups discussed later.

Lastly, later sections of this manual will explain how to connect AssistVME
running on one computer to other computers running “DriveVME” on a
network. All facilities of AssistVME, other than relating to VME resources via
local process memory arrays, are available remotely as well as locally (Presuming,
of course, that the security restrictions placed on sharing the DriveVME “V” disk
are met).

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 51

Monitoring VME Interrupts and other Asynchronous Events

Choosing the toolbar button labeled “Int” with an eye on top, or the “file” menu
entry “Monitor Asychronous….” Will bring up a large dialogue box that displays
all the events DriveVME is capable of watching for, along with counts of how
often they are occuring and the total that have been detected.

You can trigger whether DriveVME ought to respond to VME interrupts and
other events by depressing the button along side their labels and offering ranges of
values of interest.

Using this box on one processor located in the leftmost slot of a chassis to
monitor desired events, and the generation box discussed earlier in the rightmost
slot to cause events, then swapping roles, is a good way to check out the validity
of a chassis setup.

This is the last feature available to those casually desiring to browse
around the local VME bus. The next section describes how to point
AssistVME at other processors via networks. The rest of the manual is
written for programmers in the order of increasing needs and skills.

C H A P T E R 2 . A S S I S T V M E :
Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 52

ASSISTVME OPERATIONS VIA
NETWORKS ON REMOTE
CHASSIS’ VME PROCESSORS

All of the foregoing section relative to AssistVME (and also the upcoming section
relative to sending ‘C’ text programs into DriveVME’s kernel for execution) can
be accomplished by users remote to the actual via processor but nevertheless
connected via a network.

To permit users remote to a local processor access, the “V” drive on the local
system must be shared, and set with such security as is warranted using the typical
and customary Windows tools to accomplish that result. Furthermore, the local
chassis must be connected to an appropriate network, complete with all the setup
and other configuration chores that entails. How to accomplish that is beyond the
scope of this manual, there are many texts on Windows networking that describe
the operation in detail.

The “V” pseudo-disk drive is an artifact of DriveVME, represents the system-
wide access point to DriveVME operations.

AssistVME can run as a stand alone application on any computer, VME capable
or laptop or otherwise, however it requires the purchase of a development kit to
be licensed by N4 Communications.

For the purposes of this manual, we will assume that somewhere on a network
DriveVME is installed and running, and the reader is in front of a different
computer running AssistVME with network access to the DriveVME computer,
and all security and sharing requirements have been met.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 53

Check: If you can’t see the “V” drive on the DriveVME computer
using the “Network Neighborhood” icon and drilling down to the
appropriate workgroup and so forth, AssistVME won’t be able to
work with it either. Be sure you can see the “V” drive of the
DriveVME computer in question before seeking support from your
VME supplier.

Use the Assist VME toolbar icon leftmost that looks like two monitors on a cable,
or the “Select Chassis” menu item beginning “Select Chassis”, to call up the Cassis
Selection Dialogue Box.

A list of all available chassis visible to the system running AssistVME will be
displayed. The Net Scan area permits the user to conduct a scan of the local
workgroup (“Fast”) , a scan of all the top level systems in the local domain
(“Shallow”), a scan of all the systems on the same network as the system running
AssistVME (“Deep”), and a scan that amounts to an exhaustive search through
every single system possibly visible to the current system (“Full”).

Alternately, if you know the path to the system you wish to access, use the “Enter
Site” button to enter it manually.

To erase a system from the list, highlight it and use the “erase site” button.

To cancel changing which system the local copy of AssistVME is pointed to, use
the cancel.

Otherwise, highlight the system you desire to control with AssistVME in the list
then hit “OK”.

From that moment onward, any new windows opened will cause their operative
effects to occur on the chassis most recently selected (it will appear in the title bar
of the related windows).

Note, all DriveVME features, from interrupts, to generating VME cycles and
offering resources are available to remote users and remote programs. The only
facility not available to remote users is generating VME transactions via accessing
an array in the local machine’s memory space, and reviewing the content of
resources shared by the remote processor with the remote chassis through an
array in the local machine’s memory space. However, the information itself is
available through reading and writing the open file handle associated with the
resource. Full details on programming with VME files can be gleaned from
reviewing the software examples AssistVME creates for you, as well as further
sections of this manual.

C H A P T E R 2 . A S S I S T V M E :
Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 54

DriveVME’s Kernel ‘C’ System
and the AssistVME Development
Environment
Using a special “file” on the DriveVME’s “V” drive, user’s can write a standard
‘C’ program for DriveVME to compile then run at the highest level of system
performance and control, the operating system kernel.

This facility is very powerful, but also has complexities. If you do not know how
to program in the ‘C’ language, or arrived at this section of the manual without
first reading the section near the very beginning of the manual titled “Matching
DriveVME’s Abilities With Your Requirements”, reading this section may
generate more frustration than progress. This manual and facility assume that you
have had some basic experience in other ‘C’ development environments, even the
basic ‘C’ environments popular in the ‘1980s will be enough.

Once a kernel ‘C’ program has been written to DriveVME’s special file, further
traffic on the file handle which delivered the text of the program to DriveVME
delivers the ‘console’ stdin and stdout output of the running kernel DriveVME
program.

DriveVME offers many specialized VME specific functions and libraries available
to its kernel ‘c’ environment, and through it to user mode programs.

This facility has two equally important purposes. The first is to make it possible
for off-chassis networked computers to fully access VME facilities remotely,
without sacrificing the high speed operations that must be done locally, yet
without requiring the remote computers to be Windows machines. So long as
they can connect over the network to a Windows computer, they can cause highly
sophisticated VME operations to occur without a stitch of special purpose
Windows coding.

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 55

The second purpose is to allow access to kernel level VME system performance to
user level programs, and to programmers who don’t want to go the expense and
time to climb the learning curve of Windows device driver authorship just to
accomplish one or two special purpose VME effects.

The kernel ‘C’ facility is very powerful, allowing register level access to the VME
interface and other system physical devices, while providing protection against
memory reference errors and basic mistakes. In short, it is a very powerful tool
one can use like any powerful tool, to good effect or by inattention to detail –
catastrophe. If you are discouraged by the foregoing, perhaps you might be more
comfortable using the DriveVME dynamic link library or “.dll” described later in
the manual, or by using the previously described facilities in AssistVME to work
with the VME bus via high level programs like visual basic or spreadsheets, or
even AssistVME’s ability to create sample programs that are full of safety checks
based on VME access specifications you choose using AssistVME.

The AssistVME Kernel ‘C’ Development Environment

This writing assumes that the reader is seated next to a computer running
AssistVME, and has previous working knowledge of the basic, unadorned ‘C’
language as specified by Kernighan and Ritchie.

To launch AssistVME’s Kernel ‘C’ Development Environment, choose the
“Interrupt, Realtime Services Processing” menu item from the “file” menu or the
toolbar icon with the colored arrows arranged in a triangle.

The window presented is broken into three major parts. The top third, which
holds the program text; the middle third which is a “tree and branch” setup
presenting the values of variables “watched” during execution, and the lower third
which can be thought of as the “console” to which the program writes and from
which the program seeks console input.

There are two general kinds of DriveVME ‘C’ programs: those created for the
purpose of providing information to people, and so run in the context of the
AssistVME evironment; and those designed to be the “remote” or “high
performance” or “VME specific” portions of larger programs communicated with
through reads and writes to the special DriveVME file for lower priority or other
non-VME related processing.

All the files in the windows\system32\drivers directory that end in “.H” (except
those dedicated to the user mode .DLL and the one dedicated to kernel-mode
device driver authors—see the “environment” section early on in this manual for a
list) are DriveVME library files that offer specific services and are self
documenting. There methods are described to access VME interface registers,
generate and handle VME interrupts at high speeds, access VME resources, local

A S S I S T V M E – Y O U R W I N D O W O N V M E O P E R A T I O N S

Page 56

resources and much more. There are not too many of these files, and the names
give a good indication of their purpose and offerings. The best method is to
explore them.

Most of these programs are accompanied by files ending in “.c” which serve to
demonstrate the proper use and functioning of the named routines.

Use AssistVME’s file “open” command to open one of these “.c” files, or create a
simple “C” program yourself in the program edit window.

When you are ready to try it, click the desired command in the “run” menu. You
can single step through the program using the toolbar checkmarks or the “run”
menu, also breakpoints can be set and cleared with the same facilities.

Double clicking in the watch window during a break in the operations of a
running program will permit the entry of variable names, which content will be
displayed as they change during program execution. To delete a “watch”, single
click the entry then hit the delete key.

To save a program, use the “save” item in the “file” menu, you can reload it later
using the “open” item of the “file” menu.

If you are developing a kernel ‘C’ program whose purpose is to communicate via
AssistVME, then there is nothing more to be said. ‘C’ printf statements will go to
the AssistVME console window, scanf from ‘stdin’ comes from the same source.

If your program has the purpose of communicating with and being a part of other
software, take special notice of the “->C” toolbar item and the related “Create a C
program using this program” item in the “Run” menu.

This facility will create a stand alone user mode Windows ‘C’ program, ready to
compile with the Microsoft ‘C’ visual studio compiler, which incorporates the
DriveVME Kernel ‘C’ program you’ve developed—it demonstrates everything
necessary to have a user mode standard windows program pass a DriveVME
kernel ‘C’ program to DriveVME, fire it up, relate to it while it is running, then
close it down.

This completes the description of the services offered by DriveVME’s
AssistVME.

C H A P T E R 4 . W R I T I N G V M E R E L A T E D W I N D O W S D E V I C E
D R I V E R S

Page 57

DriveVME.DLL – The DriveVME
User Mode Library
DriveVME offers its services to end users and programmers with many needs and at
various levels of skill. This chapter describes how to use DriveVME’s user mode
library. The user mode library represents a middle point on the trade-off curve
between execution speed and development complexity.

If your application requires only one or two basic interactions with the VME bus, you
would be better off using the direct file handling approached demonstrated in the
“create program” buttons of the “software” property tabs in the appropriate
AssistVME sections.

If your program needs to process more than a few dozen interrupts per second (or
even into the hundreds on faster computers) you ought to consider using the Kernel
“C” methods described in the previous chapter-- or for the best possible performance,
creating your own device driver to link with DriveVME discussed in the following
chapter. Consult the “meeting your needs” section near the beginning of this manual
for further guidance.

If you are comfortable using DLL’s in general and to interact with the VME bus in
particular (as most company specific VME software vendors offer their services via
DLL libraries), and your application calls for a mix of VME access needs, then the
DriveVME library is for you.

The DriveVME DLL has two major components, the library itself, DriveVME.dll,
and the associated “.exp” and “.lib” files some compilers need to be able to link with
it, and the related include file, DVMEDLL.h.

The header file, DVMEDLL.h, provided for free with the evaluation version of
DrieVME available at www.n4comm.com and unzipped into the C:\DriveVME

C H A P T E R 3 . T H E D R I V E V M E U S E R - M O D E L I B R A R Y

Page 58

directory, is extensively documented, not only providing the compiler with the
definition of the function headers but also programming examples and documentation
for using each one. Also, the development kit includes a DOS mode and a Windows
GUI mode program and source code showing examples of using all of the DLL
features and even qualifying DriveVME on your chassis. (See the catalog in the
environment section at the beginning of this manual for details).

The list of functions and facilities in the DLL is extensive, and most easily understood
in the context of a development environment. In short, the DriveVME DLL offers
a function call oriented method to accomplish nearly every feature DriveVME
affords the user, supporting control of remote VME chassis via networks with
the same library calls used as in controlling the local VME processor.

The DriveVME DLL can be used by any program capable of relating to dynamic link
libraries, including Visual Basic, the Microsoft Office suite of products, and nearly all
programming languages and database systems qualified to run in a Windows
environment.

C H A P T E R 4 . W R I T I N G V M E R E L A T E D W I N D O W S D E V I C E
D R I V E R S

Page 59

Writing Windows Device Drivers
that use VME resources
For the highest possible level of interrupt handling performance, handling interrupts in
the many hundreds or thousands per second, or to integrate VME hardware as native
windows devices, it is necessary to create a Windows device driver.

DriveVME offers a .zip file in its evaluation directory that explains and demonstrates
this task. Look for DDKDemo.zip, and within it heavily commented dvmeddk.c, a
sample kernel mode device driver that relates to DriveVME, and also DVMEDDK.h,
the include file for the device driver sample.

New in version 4: Support for 16 and 32 bit IACK cycles for VME interrupts 1..7 on
most TSI148 based PCIx – VME platforms. See DVMEddk.h for details.

It is far beyond the scope of this manual to provide instructions about the business of
writing Windows NT device drivers generally, consult Microsoft.com looking for
“DDK” to get full details. It is a significant task, requiring a substantial investment in
Microsoft specific methods and practices. Unless your application demands this
approach, fully explore alternatives before trying this method.

Generally speaking, anything that can be accomplished by user mode facilities can be
accomplished by NT device drivers. Device drivers have the advantage of being much
closer to the source of interrupt processing, and don’t impose the processing penalty of
switching operating contexts from system to user mode and back again each interrupt
or VME access call. Furthermore, device drivers can control how much of the
system’s processing ability they use to a much finer degree than user mode programs.

Be advised that the general device driver development cycle calls for “ironing out” the
particulars of the VME accesses required using AssistVME, then capturing the
parameters in embodied in the DriveVME “filenames” from AssistVME for use by
the kernel mode driver. The only feature unique to the kernel mode driver is the
nature of interrupt callbacks, a facility demonstrated in the examples provided.

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 60

Directly Initiating VME
Transactions via Memory Map or
File I/O
This section documents the particular details of the syntax of the DriveVME “file”
strings associated with generating VME cycles. The basic information surrounding the
meaning embedded in the creation of these filename strings is described in the very
early chapter regarding AssistVME. AssistVME also has a facility that creates a fully
functional program showing how these specially named files result in generating VME
cycles.

This section is for those who seek full technical detail about this subject, and who have
already mastered the basics presented in the “AssistVME” chapter.

Most Drive/VME, AssistVME users do not need to understand this material, as
AssistVME automates the creation of these specifications. However, if detailed systems
operation and understanding is required, this document does supply added detail
particularly in the area of alignments and swapping.

This Drive/VME facility offers rich access to VME bus resources by ordinary file open,
close, read and write requests. This same interface also can "map" sections of VME
memory into a user-mode process, and return the "base address" of that array. This file
oriented approach is the simplest method Drive/VME offers to programs and kernel
mode drivers to provide nearly all types of VME bus-master transfer needs, such as for
security-transparent debugging, bus locking and even uninterruptible single or burst
transfers, and it fully supports normal, asynchronous and DMA reading and writing
operations. The only sort of master mode VME access not suited to this mode of
operation are those requiring VME read-modify-write cycles when there is possibly
contention among processes or other VME resources for a particular VME resource. For
that, and high speed interrupt processing and related needs, other Drive/VME facilities
are available.

To make it easier to review and manipulate VME resources with commercial, off-the-
shelf software and other high-end user application programs, even popular editors,

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 61

databases, and spreadsheets, this Drive/VME access method also provides ASCII text
formatting and translations of VME binary data. For example, you can choose to have an
8 bit binary register containing the value 0x8f when read, not to deliver not the default
single byte of 0x8f, but instead the two ASCII characters "8" then "f", or the three
character value in decimal "143". Also, there are ways to read and write ranges of VME
values in the popular "comma separated variable" interchange format, or combination
binary/ASCII debug formats.

VME data can be accessed just by opening the device "DriveVME" as a file, optionally
with VME access options appended after "DriveVME", then doing ordinary file read and
write operations. Drive/VME provides higher priority, and even uninterruptible ways to
access VME resources (through this facility and also interpreted user "mini-I/O"
programs run by Drive/VME in kernel mode- programs which work in concert with
memory shared by the calling user mode process). But, this file oriented method is the
easiest approach to use, and is widely adaptable to most needs, is the most portable across
CPU boards, and to be preferred whenever possible.

For example, opening the file "V:\M\sSa(100#4)rSf(H4)t(4)" (or, opening only
"DriveVME:" or "\\.\DriveVME", then immediately writing the entire previous filespec
string) would result in a file which when read would return the results of a single
supervisory cycle 4 byte (D32) read at offset 100 hex of the VME standard address space
in the form of 8 ASCII hex characters, which is appropriate for a 32 bit value.

In another example involving any plain text editor, such as the Windows "notepad",
passing: "V:\\M\a(100#40)f(P)t(1)wZp(D)" as a "filename" to be edited would display a
pretty printed 64 VME bytes starting at VME short-io (a16) address 0x100 using non-
privileged cycles transferred 8 bits at a time on four display rows of 78 characters each,
then report an End-Of-File. The p(D) parameter enables the quick-and-simple debug aid,
and as such this request does not interfere with address range exclusivity requests of other
Drive/VME using software under test also using that range. (Therefore, the wZ
parameter blocks writes to the named range.)

All in all, this is a very quick way to access, and even "pretty print" the status of a device
with no programming required.

Last, the this interface of Drive/VME is fully networkable. By designating the "V" drive
as a shared network" drive, remote users, even dial-in users, can be granted access to local
VME resources.

Detailed DriveVME Filename Specification

Note: The "AssistVME" program automates the process of making these choices and
composing these strings, as well as testing the chosen VME resources and help
autogenerating proper source code and other abilities.

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 62

Using any standard and ordinary means to open a device file named:

V:\M\<VME space><read cycle types><write cycle types><address range><special
cycles><max transfer width, byte-swapping, alignment><bus access><error
handling><permissions><priority><formatting options>

will, if successful, make ordinary or asynchronous reads or writes to the file generate
VME master mode access transfers of the specified sort. When the file is closed, all claims
to the resources it names on the VME bus will be dropped. The available options offer
full access to all VME resources in either binary or various text formats and levels of
interruptibility, exclusivity, transfer width options and so forth. If the "V" drive is shared,
then these resources are available to network users, so remote requests to open such
DriveVME files will succeed security permitting. Note this is the best way to transfer
large amounts of data, and the only way to do so over a network, and the only way to do
so without regard to processor platforms differences, the nature and status of other VME
users, and the abilities of VME interfaces.

V:\V\<VME space><read cycle types><write cycle types><address range><map bank
size><max transfer width, byte-swapping, alignment><bus access><error
handling><permissions><priority>
will, if successful, map the requested VME space into the virtual memory space of the
caller's process until the file is closed. To obtain the address in the user mode process of
the first byte of the VME space in the given range, the user must execute an ordinary 4
byte read. The structure of the available data read is:

struct data_returned_from_mapped_VME_file {
 void *first_byte_of_map_in_callers_memory_space;
 unsigned long read_write_register_value; //only useful to kernel drivers
 unsigned long bytecount_of_hardware_largest_mapped_transfer_width; //used by assistVME
 unsigned long current_bank; //x times 64K + VME start address is the
 //first_byte_xxx from start points to.
};

Whatever amount of the above structure is read must be read in a single read
request, as all read requests are presumed to reset to fetch the first byte of the
above structure.

Note: The second 4 bytes read (which if desired must be read along with the
native mapped pointer in the first four bytes done together in a single 8 byte
read) is the value which when passed in kernel mode to
READ_REGISTER_xxx routines will always deliver VME transfers of the
desired width on all processor platforms. For example, the DEC Alpha will
return 0 as the first parameter should the transfer width specified be less than
D32. This is because the DEC Alpha platform can't support D8 or D16 cycles
outside of special kernel routines. User mode programs can access these D8 or
D16 routines (for which DriveVME qualifies the parameters) by writing an

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 63

array of structures of this format of long values to the open file handle simply
using the provided DriveVME.DLL or by file writes as follows:

struct mapped_io_instruction {
 unsigned long zero_for_VME_read_not_zero_for_VME_write;
 unsigned long transfer_width;
 //0->transfer bytes using D8's,
 //1->transfer words using D16's,
 //2->transfer DWords using D32's,
 //3->transfer QWords using D64's.
 unsigned long cycle_count; //The number of consecutive cycles
 //So if transfer_width is 2 and this is 1, then 2 D32 cycles
 //will move 8 bytes. An entry of zero will end the processing.
 void *value; //The address of the first byte in user space for the transfer.
};

DriveVME will report as the result of the write the number of
mapped_io_instruction structures processed without error times the size of
the mapped_io_instruction structure. The value array must point to valid user
memory if called in by a user process. These DriveVME files should be
opened with the "FILE_FLAG_WRITE_THROUGH" option set to avoid
system file data caching. Kernel mode routines must insure the 'value'
parameters passed are valid. DriveVME checks the memory access security for
user mode routines.

Note that this can be done more simply by using the provided calls in the
DriveVME.DLL and as described in the DriveVME.H file.

The advantage to using these calls over accessing VME memory using File
I/O is that the setup overhead to map the desired VME space is already
established once the file is open, and the requests for VME access are not
serialized but run directly and in the context and at the priority of the calling
program. Therefore, these remain the fastest way to accomplish short transfers
when networking or guaranteed access independent of VME interface is not
required.

Note that to date all X86 DriveVME processors support mapping D8, D16
and D32 transfers directly as ordinary pointers in both user mode and kernel
mode programs and so do not need this additional facility, but do need it for
D64 transfers. However DEC Alpha platforms need to use this mechanism to
accomplish D8 and D16 cycles from mapped memory but do not need it for
D32 and potentially D64 cycles.
The first four bytes returned by the read of the Drive/VME file may be zero. In this case,
the specified transfer width can only be accomplished using the above mechanism (or
READ/WRITE_REGISTER_xxx routines in kernel mode using the second 4 bytes). If
the first four bytes are nonzero, then the only DriveVME guarantee is that transfers of

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 64

the specified width will occur without further system software overhead using the
provided pointer as a base address.

WARNING: Smaller or larger width transfers using the provided pointer
may or may not use smaller or larger cycles on the bus depending on the
processor platform and VME interface. Doing transfers using this pointer
other than at the requested size may be possible but the results are
processor platform specific and VME interface hardware specific. The
same program executing such cycles may not accomplish the same set of
VME transfers on different systems.

The resulting pointer is the base address the user should reference to cause a
master cycle to occur. This mapping is dropped once the file is closed. Note that
many processors do not support mapped access in all modes, and often there is a
limit to how many spaces of which size need be accessed. For example, Xycom
486 class processors can only map 64K at any one moment of the extended VME
addresses below 0x40000000 or above 0xfbffffff, but can map the entire
remaining VME spaces. So, the first file open request to map the extended space
in that region sets what is possible for the others until it is closed. Clearly,
programs should not use this feature if conflict-free portability is of prime
importance. Consult the implementation notes online and the
DriveVMEReadme.txt file included with DriveVME for your processor to
determine what VME modes can be used for mapping. Typically non-supervisory,
non-byte-swapped, release-on-request modes for all spaces are supported.
Newbridge/Tundra Universe chip processors are restricted to mapping only 768
megabytes of the extended space in any one map request.

Note: If a kernel mode device driver opens a VME memory map file (using the
Zwxxx calls), the desired VME space is mapped into memory accessible by all
kernel mode device drivers and processes (in the upper half of the x86 memory
range). Kernel mode device drivers can fully access the Drive/VME functionality.
It is intended that third party device drivers layer atop DriveVME to offer native
NT services for VME devices.

Note: Any VME permissions set for "\m" file-io access and "\v" virtual memory
mapped access apply equally to both sorts of future accesses. Blocking a virtually
mapped range against subsequent access will also block that range for file-io
access.

The options listed above after the V:\M\ or V:\V\ can be placed in any order.

There are defaults for all of them, typically only the <address range> need be
specified. The parameter options are not case sensitive, the casing shown below is
suggested for clarity. In order to be accepted as valid, at least one parameter must
be specified. Also, the "extension" convention (the . CSV or .TXT or .BIN) is

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 65

ignored. Actually, all characters including and after the first '.' are ignored, any
comments or "extension" conventions may be noted there.

Like the other interfaces, the master mode interface appears through the file
system as a sub-directory, usually on the "V" drive (use the "registry" or similar
environment tracking system device configuration parameters (typically the
"DriveLetter" parameter) to select other "drive" letters). Note that during
directory scans, only "open" or "in use" filenames will appear, but all "open"
requests will succeed if formatted properly and if access is not blocked by other
VME resource using programs.

Some operating systems do not permit passing arbitrary and lengthy strings
through the filename convention to devices. If the device file "DriveVME" is
opened with no arguments (usually \\.\DriveVME or DRIVEVME:), the desired
parameters can be established by passing them in the first write call to the newly
opened file handle. Just make the entire string listed above from the root (with or
without a trailing 0, but without the "drive" letter) the first write to the newly
opened "DriveVME" device file. The two specification methods thereafter give
identical results. (So: "\M\...options") If there are errors (permission conflicts,
etc.), the open or write request will fail.

Note: When a VME space is opened using the disk drive letter method
"V:\M\..." the system does transfers using "Direct I/O". Direct IO uses
memory management to "page in and lock down" in physical memory the
entire program's data buffer related to the PC side of the VME transfer.
This method has the advantage of not making copies of the data from the
user space to non-paged system memory for writes to VME addresses,
(and likewise not getting VME data into system memory, then copying it
to user memory for reads). As physical memory can be a scarce resource,
the overhead involved it setting up all these mappings is a good choice
when transferring large blocks of data. As the "disk drive letter" oriented
method is usually used for debugging and readable displays, not for
dedicated programs, the "Direct I/O" method is used to memory and
disk-paging time for these typically somewhat larger-per-transfer needs.

When the VME space is opened by using the DriveVME device, then writing
a configuration string, the system does transfers using buffered IO. In this
process, a copy of the data headed toward the VME bus is made from
pageable user memory into non-pageable system space, and likewise data from
the VME bus comes into a reserved non-pageable system space buffer then is
copied into possibly pageable user space. This has the time expense of some
copy operations, but does not otherwise consume the overhead involved in
memory mappings. This is the best speed choice for repeated transfers of
under a few dozen or so bytes per transfer. As most programs which use the

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 66

"device" choice are dedicated to accessing typically small numbers of registers,
the buffered approach was selected.

Note: It may be on some systems that certain address ranges or privilege
levels or other types of VME resources may be marked as blocked or
otherwise strangely unavailable. This may be due to conflicts with other
programs which claimed exclusive use of the same space, or a system
setup which marked certain types of VME access as restricted to kernel
mode or supervisory programs only. DriveVME as configured provides
full access to all VME resources, but system administrators can reserve
and restrict access by command.

If a bus error occurs during reading or writing VME bus through a DriveVME
file, a Device Data Error appropriate for your operating system will be returned,
and any attempt to transfer remaining bytes may or may not occur after that
transfer. Subsequent transfers will make fresh attempts, there is no need to close
and re-open the file after a failed transfer. Indications of this error are controlled
by the error reporting choices (windows message notice, DriveVME event log
posting). In any event, the .DLL calls providing the total number of bus errors
detected will be updated.
Should any errors occur when opening a Drive/VME file, the open request will
fail, and a status message your operating system will be returned. Typical errors
relate to syntax errors in the parameter field
(STATUS_INVALID_PARAMETER), attempts to use facilities not supported by
the current CPU, attempts to use facilities already in restricted use, and so on
(STATUS_ACCESS_DENIED). In any event, the open request succeeds without
error only if the requests are granted, and the file transfers end without error only
if the desired transfer is complete.

<VME space>

This selects which of the various VME memory spaces
will be accessed. <space> may be one of: sI, sS or sE.

sI - Short I/O Space (A16). Address range 0- 0xffff
(Default)

sS - Standard Memory Space (A24). Address range 0 - 0xffffff

sE - Extended Memory Space (A32). Address range 0 - 0xffffffff

s6 – VME 64 Extension A64 Memory Space. Address range 0 -
0xffffffffffffffff (new in version 4)

sC – CR/CSR Modified A24 Memory Space. Address range 0 - 0xffffff (new
in version 4)

M A S T E R M O D E

D R I V E / V M E

O P E N F I L E

P A R A M E T E R

R E F E R E N C E

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 67

sU(xx) - User set VME address modifier, not available on all CPU boards. Sets
the read/write cycle and access type (AM code) to the hex code in place of
'xx', above. Use sU{xx} for decimal xx.

If no <space> entry is specified, the default is the short I/O (64K) address
space (sI).

<read cycle types>

This describes the privilege level setting to use for these VME master mode
read cycles. Some VME hardware and other resources require supervisory
mode cycles, but most use non-privileged mode cycles. <read cycle> may be
one of:

rN - Non-Privileged cycles (default if term is omitted).

rS - Supervisory cycles.

rZ - No reads will occur. This is handy for setting blanket protections without
blocking permitted access. For example, a device with an exclusive read handle
already opened might permit new "write only" access, so those new "write
only" access files must specify "rZ" to signal they will not issue read cycles to
this range.

If no <read cycle> entry is specified, non-privileged data cycles (rN) are used.

<write cycle types>

This describes the privilege level setting to use for these VME the master
mode write cycles. Some VME hardware and other resources require
supervisory mode cycles, but most use non-privileged mode cycles. <write
cycle> may be one of:

wN - Non-Privileged cycles (default if term is omitted).

wS - Supervisory cycles.

wZ - No writes will occur. This is handy for setting blanket protections
without blocking permitted access. For example, exclusive writing to a register
could be confined to a single program, while permitting any others non-
exclusive read access. This parameter would signal no VME write cycles will
be attempted through this handle.

If no <write cycle> entry is specified, non-privileged data cycles (wN) are
used. Currently, all accesses are "data", not "program" mode transfers.

<address range>

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 68

This describes the range of addresses, accessing the named <space> using the
named <cycle> type, and so on, to be made available to the file. The address
range to be used is specified by the letter 'a' followed by a two numbers as
follows:

a([<Memory>]<Start offset><# for count or - for end offset><Count or end
offset>)

For example: a(1ba-1bd) specifies the desired range to be from offset 0x1ba,
through 0x1bd. Using the - as a separator implies a starting/ending address
combination. Alternately using a # as a separator specifies a starting address -
number of bytes following combination. So, a(1ba#5) specifies offset 1ba, for
5 bytes.

If no address range term is specified, then DriveVME assumes the
program is using Drive/VME to test for particular CPU VME
capabilities (transfer widths, DMA, etc) without running the risk of
address conflicts with already claimed VME addresses. All
reads/writes will report EOF in this case. Attempts to open
Drive/VME with unsupported options (DMA transfers, or
VME64, for example) will fail.

If no separator character is found, "#1" is assumed. So: a(20-20) = a(20#1) =
a(20) = a{32}.

Note: using {} instead of () implies decimal instead of hex numbers, so
a(10#10) is the same as a{16-32}.

Note: the <Memory> parameter is either the letter 'z' or 'w' after the a{ or a(,
or nothing. If no 'z' or 'w' are present, transfers behave like disk files, using the
concept of a file position and "end of file" reported at the end of the range.
Using 'z' causes each read and write to begin at the offset 0, no concept of a
file position is kept (this is handy for using a file to refer to a single register or
block of registers, it avoid the need to "reposition" the file after each transfer).
Using 'w' is like the simulated file mode above in all respects, except the "end
of file" never occurs-- reading past the end of the range wraps back to the
beginning of the range.

So if the range was a(w10#6), a 3 byte read, followed by a three byte write
would read VME addresses 10-12, then write VME addresses 13-15(hex), the
next read or write would start at "file offset" 0 (VME address 0x10, in this
case), and an EOF would never occur. This mode is best for application
programs which repeatedly read or write registers of different content stored
sequentially. For example, four banks of registers representing four copies of
the same type of hardware could be read (if sequentially addressed) with four
read commands which send the results to different structures. The cycle could

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 69

be repeated indefinitely without the need for intervening "seek" or "set file
position" commands.

If the range above was a(10#6), then the next transfer after 6th byte was
transferred would report an EOF. Programs using this or the 'w' option must
keep track of the current "file" position, and set it as needed. This mode is
best for "user application" type programs which expect to read "files" which
have a beginning and and end, and which have no trouble with concepts like
setting file positions or "seeking" to selected areas. For example, it is
appropriate to use this mode with the "notepad" simple editing program using
DriveVME with ASCII formatting options to quickly review VME registers.

If the range was a(10#6) then each transfer occurs at the beginning of the
range, so a 3 byte read then a 3 byte write above would affect bytes 10-12
only. It is as if an automatic "set file position" to zero occurs just before each
transfer. This mode is the one to choose when Drive VME is essentially
equating a file handle with a particular hardware register, or group of
sequential registers which are always read in order, and together.

<Special RMW/ADOH Cycles>

This option is only valid when initiating VME cycles via file I/O. It has no
effect for VME spaces mapped into caller's contexts. When it is present, the
behaviour of the open DriveVME file changes in many ways from the default.
Reads and writes do not operate the same way. This is a highly technical
advanced option which can be safely ignored. It provides for advanced
synchronization techniques for multiprocessor chassis. This is the method for
executing Read-Modify-Write cycles and "one of" ADOH cycles on the VME
bus. If you aren't familiar with these terms, it is very likely you do not need to
read this section further. The command
'V(<enable>,<compare>,<swap><swap-retain>)' when present in the file
open string will enable these special understandings of reads and writes. When
the V(....) parameters is absent DriveVME operates normally. Examples:

V(0,0,0) - good for ADOH writes, nearly useless for RMW reads.
V(2,2,0R) - If any read returns a value such that the value "and 2" is "2", then
always write back the same value with the 2's bit off and don't allow a ny VME
transactions after the read until the write of the updated value is done (note
that the return from the read is always the initial value, the one with the 2's bit
on).
V(2,2,0) - Operate the first read just like the above, but then update the swap
value as though the value passed to DriveVME was V(2,2,2) - which will only
change the stored value in the two's position if some other agency writes a 0 in
the 2's position.

Note that some users will need to open the same range with more than one

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 70

file handle when using these methods, so be sure to consider the reading and
writing thread and process security concerns. The following is a step by step
discussion of what occurs during these read transactions.

If the hardware supports the generation of ADOH cycles and the V(...) is
present, writes of any size to the open file handle execute exactly one ADOH
cycle at the current VME offset, which then updates the file pointer as it
would if one cycle occurred (including considering the parameters for file
position updating below). If the hardware does not offer the native ability to
execute ADOH cycles, the write will fail. ADOH cycles do not use the values
passed in to the open file call's V parameter. This option is not the typical or
most useful way to generate ADOH writes, see the i(....) priority command
below.

Each attempt to read the file handle will attempt to execute exactly one RMW
VME cycle at the the first address in the file open range. Each read request
will execute one cycle at the current VME address (base address specified plus
current file offset), no more than that will be read from VME no matter the
amount asked for. The operations of this special cycle occur in order as
follows:

1. Read Modify Write cycles are so named because they prevent other cycles
from occurring on the VME bus until the whole RMW cycle completes.
RMW cycles are like ordinary read cycles, except right after the read some
work is done based on the value read and then a value is written to the
read location and nothing can happen on the bus until that whole process
completes. The idea is to ensure in a multiprocessor safe way a common
setting for signal values. Most bridge chips and other hardware which is
the target of a RMW transaction will ensure that the local hardware will
lock the local bus to the RMW initiator to maintain data consistency across
not only VME processors but also the VME target if it too happens to be
a processor which acts based on the results of that memory. Not all VME
interface boards offer RMW cycles, and some that do don't do so in all
cases work without error. If any given VME chip doesn't fully offer RMW
cycles in the particular way desired, then DriveVME will not attempt a
RMW cycle. Instead, it will lock the VME bus to the local chassis, emulate
the RMW software operations at the highest possible processor priority
(above all interrupts), then release the bus (if it wasn't previously locked to
this chassis). The risk is when this occurs, there is no special indication at
the target that the cycle is different than a closely spaced read/write cycle
set, so the target system may not lock the local bus or memory against
local updates which may occur during the transaction. Consult the
hardware vendor (including any errata offered) regarding the performance
of your hardware. (Note: one way around this is to cause the target

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 71

memory to reside on a VME board which never changes the memory
except as a target of VME cycles).

2. The data at the desired address will be read from the VME bus target and
stored for satisfying the caller's read request without any change.

3. A computation to determine what value to write back occurs. For each bit
position in the 32 bit enable word, if the enable bit is NOT set (is 0) the
result written back for that bit position is the same as the result read and
nothing else happens regarding that bit position.

4. If the enable bit for a bit position is set, the result read is compared with
the same bit position in the "compare" value passed. If the result read for
a bit position (for which the enable bit position is set) does not match the
bit stored in the "compare" value at that position, then the value written
back in that bit position is the same as the result read and nothing else
happens regarding that bit position.

5. If the enable bit for a bit position is set, and the data read from VME
matches the compare value for that bit position, then the value written
back for that position is the value stored in the "swap" parameter for that
bit position, without regard to what the original value read was.

6. In the event that bits from the swap register are written, the user may
specify a further choice. If the 'R' (for "retain") parameter is specified after
the swap parameter, then this step is skipped. If it is not specified, then in
the event a bit position from the swap register is written, after it is written,
the value originally read from VME in that bit position is saved into the
swap register in that bit position. In such events, the next time such a cycle
occurs, should the situation again call for writing the content of the swap
register, the value read which triggered the previous swap will be written
back, and NOT the original value passed in as the swap parameter.

7. Once the RMW cycle completes (or the software emulation of it
completes and the bus lock is released if it wasn't already locked to this
chassis at the onset of the cycle, and the processor execution priority is
returned to the normal values for the calling thread), the first value
returned to the caller is the original value read from the VME target. If the
caller's read request is large enough to hold two values, the second value
returned is the current content of the swap parameter. The width of the
values returned is controlled by the cycle size selection (1, 2, 4 or 8 bytes).

<Bank Size>

This option is only valid when mapping VME memory into locally accessible
memory space. It should only be considered by those who need to map more
than 768 megabytes of VME space into local memory at one time. Others can

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 72

safely ignore this term. The maximum size of any one memory map is 768
megabytes. This limitation has to do with the physical memory overhead
involved in keeping track of page table entries for each virtual memory page
mapped into VME space. However, DriveVME will permit memory maps of
any size to be allocated and reserved in one call. If the memory size allocated
is greater than the parameter specified here, (or 768 meg if this parameter is
omitted), then only the first 768 meg will actually be visible in the user
process. Access to higher multiples must be achieved by making a
DeviceIoControl call which specifies the number of the desired multiple of
the bank size to "bank in" or make available. This process of switching banks
causes a different section of the reserved VME target memory to be available
to the caller's code. Previously, this bank swapping could be achieved by
simply closing one map handle and opening another with the new desired
range. But, the security limitations involved in not reserving all the associated
device memory as well as the overhead associated with opening and closing
files prompted this enhancement. If the total memory desired is less than the
map size (which defaults to 768 megabytes), then this parameter has no
practical effect. To set the bank size to a desired value, use:

m(<bank size in hex bytes) or m{<bank size in decimal bytes>}

Note that currently the bank size must be an even multiple of 64 kilobytes,
that is: 65536 or (10000 hex), and if it is specified at all, less than the overall
map length. The bank can be thought of as a sliding window which can be
positioned to start at any 64K boundary in the requested VME space. Note
that to employ the banking scheme, the VME start address must be on a 64K
boundary, as well.

To change which bank of the whole mapped space is visible to the process,
the caller must execute a DeviceIoControl call as follows:
#include <dvmeddk.h> //This holds the definition of the
IOCTL_DRIVE_MAP_BANK_SET constant, below.
BOOL SetBank(HANDLE drive_vme_open_mapped_file_handle, int banknum,void
**base_address) {
 //banknum is an integer which when multiplied by 64K and added to the VME start address
will
 //yield the VME address the first byte of the returned array will reference.
 BOOL ret;
 ret =
DeviceIoControl(drive_vme_open_mapped_file_handle,IOCTL_DRIVEVME_MAP_BAN
K_SET,
 &banknum,sizeof(int),base_address,sizeof(void *),&got,NULL);
 if (ret) { if (got!=sizeof(void *)) ret = FALSE; }
 return ret;
}

If the call returns TRUE, then the base_address will point to the location in
local memory which if accessed will initiate a VME cycle at the VME address

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 73

which is the start of the VME range in the a(..) parameter above plus the result
of multiplying the passed in bank number with the bank size specified in the
m(..) parameter (or 768 MB if no m(..) parameter was included. The address
will point to VME for m(...) number of bytes. Actually the structure returned
is the same in all respects as that returned by reading the file handle. This call
combines the "set" with the "read" for efficiency.

Note that the call may or may not return the same value as previous bank
requests. It is an error to presume that the virtual address returned will not
change as the bank requests occur. Although on many platforms the result will
not change (most of the time), on others it will change every time. So this
architecture is required for best portability.

<General cycle choice: program/data, coupled/posted writes, single/block
transfer,bus grant,arbitration>

This describes the method by which these transfers will share and access the
VME bus. The share and access specifiers are C(...), such as C(WSD) for
coupled writes, data cycles, single transfers.

c(<writes coupled/posted><program/data cycles><single/block
transfers><bus grant level><bus sharing mode>) where:

C

Do coupled writes. When a VME write occurs, wait until the transfer on the
VME bus is complete before moving on to the next instruction. This is
slower, but assures that all the other VME hardware will read the written data
at the moment the instruction to write it completes. Also, the cycle width
requested will be the cycle width executed, there will be no automatic
performance improving assembly. (For example, a chain of byte writes will all
do D8 cycles, even though a D16 or larger ability was approved and selected).
This is the default.

W

Do posted writes. When a VME write occurs, put it in a DMA FIFO then
return immediately. This is much faster, and makes it possible for the DMA
hardware to assemble back to back transfers of shorter width into fewer
transfers of larger width (in particular, back to back 32 bit writes may be
assembled into single D64 transfers assuming the other parameters are chosen
properly on suitable hardware). Note that all local CPU VME reads will be
held up until the last of the posted writes has completed. Warning: This means
that although the local CPU has written the data, the data may not be
immediately available to the other VME cards in the chassis. If sequencing is
essential, do a read after a chain of writes. The read will not complete until all
the pending writes have completed. Note that popular VME interfaces can

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 74

only do coupled writes when the VME bus is locked to the local chassis. To
insure you are getting posted writes, set the "release on request" or "release
when done" bus priorities. Note also that if the VME hardware design suffers
from the deadlock which can occur when the local chassis memory is the
target of VME cycles at the moment the local system is attempting to initiate
VME cycles, DriveVME will automatically attempt to lock the VME bus
before initiating cycles via file I/O (to prevent the deadlock). This has the side
effect of converting posted writes to coupled writes.

S

For every VME address cycle, do only one data cycle. These are "single"
transfers. Some VME hardware accepts a single address cycle, then a series of
data cycles with the assumption that the data is for sequential addresses. This
improves the VME performance by nearly 100% on large transfers. However,
not all hardware can accept such burst traffic. To accommodate these one
address for one data cycle devices, use this "single" flag. This is the default.

B

Permit Block transfers, replacing S, above. Should multiple back-to-back
transfers of the VME bus be requested to consecutive addresses, do only one
address cycle, then data cycles. This improves performance nearly 100%, but
requires hardware capable of accepting this mode. This is because the time
necessary to execute an address cycle between each and every data cycle may
be saved. Note: Not compatible with non-incrementing DMA.

L

Do multi-block transfers, replacing B above. MBLT Multiblock transfer types
will be attempted. New for version 4.

E

Do 2eVME transfers, replacing L above. Double edged higher performance
VME 64 extension transfer type. Usually 160MB/s. New for version 4.

T
Do 2eSST transfers., replacing T above. Requires following (decimal) or
{hex} desired maximum transfer rate. So T(160) -> attempt 2eSST cycles at
160MB/sec max. Other popular rates are 267 and 320. 0-> lowest available.
New for version 4.

R

Do 2eSST Broadcast Transfers. Replacing T above. Requires following
(decimal) or {hex} desired maximum transfer rate, followed by (decimal) or

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 75

{hex} broadcast destination slot bitfield, where value & (1<<(slot-1)) -> send
2eSST cycle to card in this slot. So R(160){a} -> attempt to broadcast 2eSST
cycles at 160MB/sec max to slots 2 and 4 . Other popular rates are 267 and
320. 0-> lowest available. New for version 4.

D

Execute Data cycles. This is the default. The VME bus permits cycles to the
same addresses to be distinguished as either for program or data. Some VME
processors set this election automatically depending on whether the access is
an instruction fetch or a register load. However, other processors require this
be set by the user for all transfers.

P

Execute Program cycles. Should the nature of the data to be transferred be
program instructions, (or for other addressing reasons) program cycles are
available. Note that most VME interfaces do not permit more than one of
these elections to be made for the entire interface chip, so memory mapping
requests should all specify one or the other (preferably D). If this is not the
case, whichever memory request comes second will be denied.

0 or 1 or 2 or 3

Request the VME bus on at this request priority level. Nearly every application
calls for the default, 3. Note that only one such setting may be permitted for
all memory mapped resources in most cases. Also some platforms can only
support requests for the bus on level 3. Finally, there are some VME "slot 0"
arbitration cards which only provide arbitration services for level 3. In short,
use the default unless you are very sure your application reasonably requires
something else and does not need to be too portable or have third party VME
software running.

F

Request VME bus access in "fair" mode. This mode will not request the VME
bus on the chosen level a second time until no other requests for the bus at
the chosen level are outstanding. This provides essentially round robin access
to the bus, with the longest waiting request at the highest level being granted
the bus first. However, this mode is not the tradition in VME applications,
and is not the default. Note also that only one such election can be made for
all mapped resources per CPU on most platforms-- whichever application
makes the first mapped memory request will set what is permitted until the last
application making this request is closed. (Same goes for program/data cycles,
bus request mode, bus release mode (when done/on request), bus request
level).

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 76

M

Request the VME bus access in "demand" mode. This mode will grant the
card closest to slot 0 access to the VME bus at any given request level. Higher
levels are always granted access first. Demand mode guarantees performance
and implies a "priority sensitive" installation of bus mastering cards in the
chassis. Cards in higher numbered slots may not be able to access the bus in a
timely fashion -- be sure to consider this requirement in your designs. This is
the default.

<max VME transfer width, byte swapping, alignment selection,
prefetching>

This describes how much data, at most, to transfer per VME I/O cycle, and
choices about how to handle it during the transfer. For VME access through
File I/O, the system will use exactly the width specified (or highest available if
t(0) or t(0s)). When accessing VME memory mapped into user process or
kernel space the returned pointers may be different depending on the ability of
the processor to access memory at the desired widths and lower widths.

(In particular, the DEC Alpha computer will always return 0 as the first long
pointer as the mapped address if the transfer size requested is less than D32, since
the processor can only directly address values using D32 cycles (even programs
which only refer to bytes or 16 bit values using this pointer will execute D32
cycles to get these). To access VME memory as 32 and/or 16 and/or 8 bit values,
pass the second 4 byte pointer read from the map file in kernel mode to the
READ_REGISTER_xx routines-- on X86 platforms the first and second values
are the same. In user mode, see the DriveVME.DLL documentation or see the
DVMEDDK IOCTL_DRIVEVME_MAPPEDMEM_IO call)

For example, a read request of two bytes can be read using two single byte
cycles "t(1)" , or one 16 byte cycle with or without byte-swapping ("t(2s)" or
"t(2)"). The default for this term is t(2s). The width specifier is the letter 't'
followed by maximum number as follows:

t(<max>[<swap>][<align>][<prefetch>]) where <max> is one of:

0

Best available transfer width for the current CPU. This is guaranteed never to
be less than sixteen bits per transfer (t2). Note that some VME configurations
do not come with a P2 backplane, but use VME processors which support 32
bit and higher bits-per-transfer cycles. So, "best available" will execute 32 bit
cycles the upper 16 bits of which will be wrong unless a P2 VME backplane is
installed. If the application does not gain a speed benefit by using 32 bit or
higher bits per transfer cycles, consider using a "2" instead for better
portability. Note that the Pentium only executes 32 bit external bus signals,

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 77

but these are automatically assembled by hardware into 64bit VME
transactions for speed if t(8..) is chosen on some systems.

1,2,4 or 8

Transfer at most one, two or four or eight bytes per cycle. Note that smaller
transfers are always possible, and sometimes even necessary. This just sets the
maximum. An explicit request for a particular maximum transfer width (like 64
bit maximum "t(8)") will return an error if the host CPU does not support that
option (usually VME64).

<swap> is the letter 's' or nothing. If the letter 's' is appended to the width,
then the data bytes are swapped on multi-byte transfers (so t(1) and t(1s) are
the same). For example, if 16 or 32 bit quantities are to be read, and the
quantities are each separate numbers, then no swapping need occur between
big-endian (Motorola, most VME peripherals) and little endian (Intel)
architectures, as the data is placed correctly on the bus. But if these are byte
quantities (text) being read in multi-byte transfers, then byte swapping should
be selected so that the string "fast" saved in a big-endian way does not come
out as "tsaf" on a little-endian machine. The swap is for the full width of the
transfer, so for 16 bit transfers bytes 1 and 2 come over 2,1, 32 bit transfers
bytes 1,2,3,4 as 4,3,2,1, and so on. Some processors do this at high speed in
hardware, others require slower software emulation. Note: If the 't' term is
specified, then you must still add 's' for swapping if swapping is desired, even
though t(2s) is the default.

<align> is the letter 'a' or nothing. This option is important when doing
multibyte transfers per cycle when the VME side of the transfer is not word
aligned for 16 bit transfers, or double word aligned for 32 bit transfers, or
quad-word aligned for 64 bit transfers. The 'a' option forces execution of
multibyte transfers starting with the first specified byte for the requested width
yielding the result as though it were aligned and transferred with one cycle.
With this feature enabled, the appearance of single-cycle alignment blind
transfers occurs wha tever the VME address and cycle size, even if it is not
aligned on the boundary needed to accomplish the transfer in reality in one
VME cycle. Without this option, a request to transfer words starting on an
odd VME address would transfer one byte, then words. A request to transfer
32 bits starting at VME address 1 would transfer the byte at 1, the word at 2,
then quadwords from then to the end, etc. So, there is a VME performance
penalty associated with the freedom to execute unaligned transfers. Leaving
this option off is best for speed, if one knows that no transfers of unaligned
multibyte quantities can occur. Note that many bus interfaces will not execute
unaligned transfers, so forcing the system to operate using the 'align' flag may
cause more transfers to read the same data. Also note: If all the transfers are
aligned on the cycle boundary appropriate for their width, then this flag is
essentially a "no op", as it's services will never be engaged.

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 78

No VME memory mapped into a process can be unaligned. This parameter is
ignored when mapping memory into a process, it is up to the programmer to
only execute aligned requests. Or, to purposefully execute unaligned requests
which does have merit on rare occasions. The results of executing an
unaligned request in mapped memory are undefined, most processors will
execute two of the nearest aligned requests, then assemble the data -- but this
should not be depended upon.

The easiest way to understand these effects is to see the effects of the various
operations. The table below shows how data stored at the given VME address
where there data equals the address would be read under the various options.
The information listed is shown as the "little endian" (Intel) processor would
store the data bytewise in its local memory. Note that just because the data
appears to have been stored the same way in some cases, it may have gotten
stored there with more or fewer VME cycles. The more bytes per transfer, the
fewer the total cycles. Also note that using the 'A' flag to force the data to
appear aligned when accessed in an unaligned way may result in cycles smaller
than the stated size.

For example, accessing a 32 bit value declared as t(8a) at but at an offset where
"address AND 3 == 1" one will cause an 8 bit VME cycle, then a 16 bit VME
cycle, then another 8 bit VME cycle. The result will be stored as though a
single 32 bit unaligned cycles was supported, however instead of taking 1 cycle
to access the data, three were needed. This also makes the assumption that the
relevant device can support cycles smaller than the named one. This is because
the VME bus does not support unaligned transfers at the physical level.

The table below shows transfers which start at different offsets. Where a list
ends with ..., the implication is that the pattern repeats. Entries without ...
show the result of fixed 16 byte reads, typically on partial transfersized
unaligned end bytes.

 VME Address 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19
Sample Data: 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19

s), t(1),t(1sa),t(1a),
t(2s),t(2sa),
t(4s),t(4sa),
t(8s),t(8sa): 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 ...
t(2s),t(2sa),
t(4s),t(4sa),
t(8s),t(8sa): 1 2 3 4 5 6 ...
t(4s),t(4sa),
t(8s),t(8sa): 2 3 4 5 6 7 ...
t(4s),t(4sa),
(8s),t(8sa): 3 4 5 6 7 8 9 ...
t(8s),t(8sa): 4 5 6 7 8 9 A ...
t(8s),t(8sa): 5 6 7 8 9 A B...
t(8s),t(8sa): 6 7 8 9 A B C...
t(8s),t(8sa): 7 8 9 A B C D...

t(2),t(2a): 1 0 3 2 5 4 ...
t(2): 1 3 2 5 4 7 6 ...
t(2a): 2 1 4 3 6 5 ...

t(4),t(4a): 3 2 1 0 7 6 5 4 B A 9 8 ...
t(4): 1 3 2 7 6 5 4 B A 9 8 F E D C 10
t(4a): 4 3 2 1 8 7 6 5 C B A 9 ...
t(4): 3 2 7 6 5 4 B 8 9 8 F E D C 11 10

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 79

This whole issue of alignment and byte-swapping arises because the VME bus
allows for processors which use different data storage schemes to operate
together. As the bus can't know the content of the data, it is up to the
software and each processor to correctly align and swap bytes as needed to
preserve the meaning in the data transferred.

Note that if the last few bytes of a transfer are smaller than the word size
selected, the system will attempt to complete the transfer by choosing one
transfer at each of the next smaller transfer sizes in order to the byte level if
needed, using the same swapping choices and alignment as it falls.

<prefetch> sets how many bytes of VME data are read upon an initial read to
speed up delivery of following, presumably sequential, reads. This is new in
version 4. If omitted, no prefetching is done. The choices are:

N
No prefetching. The safest choice particularly if reading io registers that might
be destructively read, or to avoid bus errors when VME targets don’t offer
memory that doesn’t end on a cache line boundary (32 bytes typically), or
when reads are rarely sequential.

B
Best prefetch. Prefetch as much as the VME interface chip allows. At this
writing that is 16 lines of 32 bytes.

1,2,3,4
2^^(choice) = number of 32 byte cache lines to prefetch.

<error handling>

This term determines what will occur in the event a VME bus read or write or
other request from this CPU results in a bus error. The choices are included in
e(...). The default is to return the bus default value, usually -1, otherwise taking
no action. This choice is taken as advisory; meaning that the system will
comply if the hardware permits, but will not fail the open request if it does
not.

e(N) Causes no special action to occur in the event of a VME bus error, other
than returning the VME bus default value. This is typically -1. Note that many
systems can only support this mode, which is the default. The AssistVME log
will not be updated to report anything, even if a bus error is detected.

e(S) Stop any I/O in progress, up to but not including the byte at which the
error occurred. The net effect of this is that read or write requests will return
with fewer than the requested number of bytes read or written. This option
only has meaning for file mapped VME memory (\M\....). This option is not
available on all platforms. The AssistVME drive operations log will be

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 80

updated with as much details as the system can provide. It is ignored on
mapped regions (other than enabling logging to AssistVME).

e(Mxxxx) Send windows message xxxx (always in decimal) to the calling
process, with the VME address which failed as the 32 bit LParam value. Not
all platforms record accurately which VME request it was which generated the
error, only that the error did occur in the context of processing a request from
the calling (file) or current (mapped) process. If the address causing the error
is unknown or indeterminate, the resulting value is 0. If the S parameter is also
specifed (e(SMxxx)) then the AssistVME drive operations log will be updated
with as much details as the system can provide. Note that AssistVME must be
running in its default "service" mode for this feature to have meaning.
(AssistVME is always installed with Drive/VME, unless special action is taken
to disable or stop it.)

<permissions>

This term determines which other threads and processes can access this range.
The permissions allowed follow the letter 'p'. Unless qualified, the permissions
apply to both reading and writing permissions sought. See below.

p(A) Allows all others non-exclusive access. (default if no p term specified).
Has the effect of blocking future exclusivity requests.

p(P) Allows access to this space and range by any other thread in this process,
but no other processes.

p(T) Allows this thread to have added access, but no other threads.

p(K) Allows only kernel debuggers shared access. Can't be issued in user
mode. Used by kernel mode device drivers layered atop Drive/VME. Will fail
if a user-mode debugger holds part of the requested space.

p(N) Blocks all reads and writes from this handle for the given space
(meaningless if rZ and wZ), but allows other kernel mode only, processes
access to the range. Handy for reserving the entire supervisory space to kernel
processes, without blocking the reservation of any particular subspace by a
kernel process. Can be issued in user mode.

p(D) Identifies this process as a debugger. This will allow access typically
denied by p(P), p(T) requests if made by a user mode process, and will grant
any access if this is a kernel mode process. Any ranges granted will not block
any exclusivity requests by other processes, including other debuggers.

p(....F) Identifies this software as "finished" software, and in particular
essentially disables the 'D' Debugger parameter of any user mode request to
prevail against local register access exclusivity. So, an address selected with

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 81

p(TF) would block all other threads, even debugger threads, from getting
granted access to the named range, except: any kernel mode debugger will be
granted access.

The permissions for reading and writing a space can be set separately as
p(w?r?) where the ? can be replaced with A,T,P,K,N,D above, the F for
finished software (to block user mode debuggers) may be added. the W option
sets the write permissions, the r sets read permissions. If a one read or write
permission is set, but not the other, the unset one remains at 'A' . (The default
of p(A) is the same as p(wArA).) Note that p(AF) "permit all, finished code"
will not block debuggers as a special case, permit all includes debuggers.

Note that if the read/write access type is set to 'none' (rZ or wZ) then the
permission sought is ignored for that type of operation-- except for the p(N)
parameter, which permits other kernel mode processes exclusive access to a
range, but no user mode processes. Permissions are granted in a first come,
first served order, so administrators who seek to reserve certain VME access
types should open the relevant file handles during system startup operations.
This means that even kernel mode requests for exclusivity which occur after
established but conflicting user mode requests will be denied.

Also, consider how overlapping ranges work. For example, if thread 1 does a
"permit thread" to for addresses 10-12, then another thread 1 "permit all" for
ranges 1-100 would succeed. Other threads would not be able to access 10-12,
but would be able to get "permit all" access to 1-9 and 13-100.

<priority>

This term defines whether other processes may interrupt transfers using this
handle, and whether to use DMA modes, whether to attempt an ADOH cycle
and local bus lock before file I/O transfers, and other transfer bus related
options. The optional substitutions for the ? term and the xxxx term in the
commands are explained later.

i(?Sxxxx) Generally "Release on Request" (ROR) (i(S0) is the default). Does
processing at dispatch level priority. The CPU may not execute transfers while
the bus is locked elsewhere. This does the transfer above all user-mode
threads, but doesn't lock the VME bus. This is the safest mode, but transfers
that take more than one bus cycle to complete may be interrupted by other
bus activity. This may be a problem if other VME resources may access the
same registers this one is changing, or if there is critical time-sensitivity to
setting these registers. Note that if transferring multi-byte data in a single
cycle, this mode does just as well as any more restrictive, higher-priority mode.
If i(S) is not available on this CPU, i(D) below is substituted. This retains the
VME bus unless some other resource requests it, done or not, saving bus-
acquisition time on subsequent transfers. (Timeour or Done) and Request.

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 82

i(?Dxxxx) Exactly like i(S), except releases the VME bus when done (RWD)
with the transfer, whether other requests for it are waiting or not. This CPU
must re-acquire the bus before the next transfer can occur. If not available on
this CPU, i(S) is automatically substituted. (Timeout or Done).

i(?Qxxxx) Exactly like i(S), except releases the VME bus when done or time
expires and any other bus request exists. not available on this CPU, i(S) is
automatically substituted. (Timeout and Request) or Done.

i(?Bxxxx) Exactly like i(S), except releases the VME bus when done or a
higher priority request for the bus occurs. If not available on this CPU, i(S) is
automatically substituted. (Timeout and BCLR) or Done.

i(?Lxxxx) This locks the VME bus during transfers. The transfers occur at
DPC priority level, that is, above all user threads but just below local CPU
interrupt processing. The transfer will not commence until the bus is locked to
this system. The bus is released when the transfer completes. No other
transfers can occur on the VME bus once this starts, until it finishes (or this
segment finishes if using a nonzero xxxx number).

i(?Rxxxx) This is the realtime option. Like i(L), but the transfer happens at the
highest possible NT priority after the bus is locked. The priority returns to
normal after the transfer completes and the bus is released. The transferring
process essentially owns the entire system for the duration of the transfer, it
locks out everything but catastrophic failures, including the system clock, so
keep these short. Some systems may impose a 1024 transfer-per-segment limit
on this option. Instead of this option, consider using the ML option, that is,
locking the VME bus but using DMA for large transfers. This will avoid
locking out interrupt processing for this CPU.

The xxxx in all the above is a hexadecimal number (if i{...} then xxxx is a
decimal number). If non-zero, this is the number of transfers (not necessarily
bytes, if t(4) then 1 transfer is 4 bytes) to complete before releasing the VME
bus to other bus masters and waiting local processes. After the specified
number of transfers, the bus is released and the transfer scheduled to re-
commence in the system queue- but after any other processes scheduled at
this priority have had a chance to run.

The ? in all the above is one or both of the optional letters 'A' and 'M' and
(new November 2000 v3.12 on Universe IIB equipped boards) ‘N’. If missing,
the transfers happen using CPU programmed I/O with no ADOH cycle and
local bus lock before each transfer request. if the letter 'A' is present, before
each File/IO transfer request, and only when parameters L or R (which lock
the bus) are specified, the processor will execute an ADOH cycle on the VME
bus, and a LOCK on the local bus before commencing the transfer (but only
if the interface supports it). So i(AL200) would, upon each transfer request,

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 83

raise the processor priority above task switching (but not interrupt handling),
lock the VME bus to the local chassis, execute an ADOH cycle on the VME
bus, do a LOCK command on the processor bus, do at most 200 transfers,
release the VME lock, restore the processor priority, then return.

If the letter 'M' is present for ?, where swapping modes, hardware capability
and priorities permit, the transfer happens using DMA transfers. So,
i{ML5000} would use DMA at just below interrupt priority in 5000 transfer
cycle maximum (at however many bytes per transfer) chunks. Leaving the "M"
out of the above results in CPU managed transfers. Note that for DMA
transfers to occur, the low-order 3 address bits of both the source and
destination addresses must match, and no software-assisted alignment can be
selected.

If the letter ‘N’ is present for ?, in every respect the system behaves as though
‘M’, the DMA choice was made—except the VME address is not incremented
during the transfer. Note that this feature has all the restrictions of the DMA
feature, but neither software assisted alignments nor multi-byte transfers can
be selected. If set up improperly, normal DMA or programmed IO transfers
occur without warning.

Note: The DMA option is best suited to asynchronous VME read
and write operations of large (over 125 or so) transfer operations.
The time involved to set up DMA requests must outweigh the
performance gains due to the parallel execution nature of such
transfers.

<formatting options>

Typically, VME reads and writes return the actual binary values without
interpretation. This formatting code is f(B), unformatted binary transfers, the
default. No parameters are accepted with the binary format.

In general the syntax is: f(<general format type like binary, signed
decimal...>[<bytes per item, 1, 2, 4, or 8>[<item separator style>[<items per
row for non-binary formats>]]])

f(H1) interprets the results in ASCII hexadecimal, 2 bytes transferred via
read/write for every one VME byte transferred, with no spaces between the
values.

Note: for any many-ascii-to-one-byte options, if the program does
a series of single byte transfers, the VME data is read once to
deliver the most significant digit, the remaining digits are cached

C H A P T E R 5 - R E F E R E N C E S E C T I O N : D I R E C T L Y I N I T I A T I N G
V M E T R A N S A C T I O N S V I A F I L E I / O .

Page 84

for subsequent reads. Any seek or Set File Position to any but the
next character in the cache, dumps the cache.

f(H1s) puts a space between each two hex digit output (3 ASCII for 1 binary),
f(H1c) puts a comma, then a space between each (4 ASCII for one binary).
Appending an 'r72' after the s or c will substitute the first space or
comma/space which would have fallen after the 72nd column with a newline
character f(H1sr72) or a CR, LF f(H1cr72). The substitution of this 'end-line'
sequence will always take place if the next element will not entirely fit on or
before the given column number. You can replace the 72 with any decimal
value. The 'r' parameter retains constant output-bytes-per-line to binary-bytes
ratio by replacing, not appending, the " " or ", " with either a linefeed or
return-linefeed combination respectively. You can effectively create comma-
separated-variable (CSV) formatted files this way, thereby loading VME data
directly into spreadsheets and databases. Note: This assumes columns are
numbered starting with 1, and the column numbers are figured based on the
VME address offset of the item relative to the beginning of the requested
VME address space, not the beginning address of any single transfer.

f(H2[s[rxx],c[rxx]]) does the same but transfers 16 bits and transfers them
through 4 ASCII hex characters, with the same optional r, s and c qualifiers.

f(D[1,2,4,8][s[rxx],c[rxx]]) does the same as the H counterpart, but in unsigned
decimal, using three spaces for 1 byte, five for 2, 10 for 4, right justified, space
padded. f(S...) is the same as f(D..) but signed, with one more space to allow
for the possible minus sign for each byte width (4 for 1, 6 for 2, 11 for 4.).

f(P) pretty prints the reads, and assumes binary writes. This feature makes for
quick debug displays. It is possible to create a "program manager" entry
passing a Drive/VME "file" to the notepad editor, which when run will take a
snapshot of a selected VME resource. Each read should be in multiples of 81
characters, and prints a line showing 16 values starting at the current offset
like: 0x<offset>: x x x x x x x x | x x x x x x x x *........|........*<CR,LF> where
the .'s are the ASCII if the binary is printable, and the xx are the hex
representations of the data. If the range does not extend to fill the line, blanks
are padded. No parameters are accepted with the pretty-printing format.

For example opening : "V:\M\a(100#20)f(P)t(1)wZ" would pretty print the
32 bytes starting at VME address 0x100 in the short-io space using standard
cycles transferred 8 bits at a time on four rows, then report an EOF. It would
also block any attempts to write the file. The display would be truncated upon
the first bus error.

C H A P T E R 6 . O F F E R I N G L O C A L P C R E S O U R C E S T O O T H E R
V M E H A R D W A R E - R E F E R E N C E

Page 85

Offering Local Resources to
Other VME Bus Masters
This section contains the full technical details relative to offering local resources to
other VME bus mastering hardware. Note that the section on AssistVME at the
front of this manual outlines these functions in basic detail, and includes an
automatic and relatively painless method for creating the detailed VME file
“names” required by DriveVME, as well as an automated method for generating a
sample program that actually offers the local resource.

Although this section does not require that the user try AssistVME section first, it
might represent a great time savings to do so.

This section is meant for those users who want or need to understand all the
technical details behind the choices.

This Drive/VME facility allows the user to open a file whose name specifies how
regions of local PC memory should be offered to the VME bus. Drive/VME
allocates these regions, removes them from the virtual memory pool or from other
conflicts or use by the rest of the operating system, then provides the physical
address of the slave memory for use by other processes (if it was unspecified,
initially), and a virtual address for the same space for access within the caller's
process. Security is enabled, is it possible to reserve regions of memory so that
they may or may not be shared by other processes.

For example, while the file "V:\S\a(100#5)sSb(100000)" was open, 5 bytes of
memory starting at local physical address 100 would be available to VME users for
both program and data, normal and supervisory cycle access in the standard VME
space at offset 0x100100. Reading four bytes from this file would give an address
in the callers process which serve as the base address for the first byte at the local
physical address 0x100. When the file is closed, the memory set aside for VME
slave operations is returned to the local operating pool. When the last file offering
slave memory is closed, the slave memory interface to the VME bus is disabled
(which is the default state until the first request occurs).

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 86

Note: Many systems limit the number of access modes and spaces in which slave
memory can be simultaneously offered. Users should select the extended VME
space, permitting all cycle types when possible. Also: For security, if the first file
opened is "\S\X" then the slave interface is disabled, and all further attempts to
grant slave access to local memory will be denied.

Last, the this interface of Drive/VME is fully networkable. By designating the "V"
drive as a shared "network" drive, remote users, even dial-in users, can be granted
access to local memory slaved to other VME resources.

Major Features:
1. Ability to map different VME spaces to some or all of the same local physical

memory.
2. Ability to share local physical memory exposed to the VME bus among more

than one local thread, process, or kernel mode driver.
3. Allows NT kernel mode drivers to directly offer any local physical memory

(including memory mapped devices) and the local I/O space to one or more VME
address ranges.

4. Ability to set aside an arbitrary amount of fixed, non paged, system memory for
Drive/VME offering to the VME bus.

5. Ability to read and write the VME shared local memory region as a file, so (if
desired) remote users via networks can examine and/or alter the content of shared
memory regions, or share new regions using ordinary file I/O.

6. The system security features of Windows/NT are preserved.
7. Multiprocessor NT and later systems supported.
8. Full resource sharing arbitration among unrelated applications running on the

same CPU.
9. Ability to specify or let the system choose particular VME characteristics and

addresses, local memory characteristics and addresses, or any combination.
10. Ability to restrict or disable VME memory sharing.
11. Support for local program and VME debuggers.

Using any standard and ordinary means to open a device file named:
V:\S\<VME space><slave cycle types><PC address (opt), length><VME
Offset (opt)><Slave Bus options><Slave Transfer Priority><Select Slave Byte
Swapping><permissions><Disable or Limit Slave Interface><error handling>

For example, while the file "V:\S\a(#6)sSb(1000)" was open, 6 bytes of memory
starting at a local physical address picked by DriveVME would be available to
VME users for both program and data, normal and supervisory cycle access in the
standard VME space at offset 0x1000. Reading four bytes from this file would
give an address in the caller's process which serve as the virtual memory process-
relative base address for the first byte of an array at least 6 bytes long starting at
the local physical address which corresponds to VME A24 address 0x1000. The

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 87

next four bytes yield the actual address other VME bus masters should use to
access the reserved space-- 0x1000. Once the file is closed (and no other local
request exists to hold the range open) the VME space corresponding to the
request will no longer be decoded-- requests for the space will result in bus errors.

Please read about the p(N) parameter, which allows a range of VME addresses to
be reserved for subsequent multiple local slave allocations. The conserves limited
VME hardware mapping resources. It also makes it possible to have many local or
off-card threads/processes access the same patch of shared memory. If many
applications which offer slave resources are running, they may exhaust the
available VME slave range decoding registers when none would do so if run
individually. Using the p(N) parameter and AssistVME, it may be possible to
create one overall slave reservation which combines the compatible spaces needed
by the requests of the individual programs-- allowing them to use the same VME
slave map resource.

Detailed discussion:

Once the desired file containing the specifications for the desired space to share
has been opened, the very first read from the file will deliver the following
information. As much of the information listed below as desired should be read in
one request, as subsequent requests for reading or writing will deliver the contents
of the shared memory (beginning at offset 0), just as though it was a file. This
makes it possible for remote network users to offer and read/write slave space on
a distant NT VME chassis by doing ordinary file I/O. Starting in Version 4,
Note the first structure applies only in spaces other than A64, the second applies
when exposing local memory to the VME64 extensions A64 space.
struct VME_Slave_Allocation_Results {

void *local_memory_slave_base; //32 bit pointer to slaved memory. Null for
p(N) calls.

unsigned long vme_memory_base_offset; //where in VME space
*local_memory_slave starts.

volatile unsigned long vme_memory_low_decode; //first VME address
decoded to support the given request

volatile unsigned long vme_memory_high_decode; //last VME address
decoded to support the given request

//Note: vme_memory_low_decode <= vme_memory_base_offset.

//Note vme_memory_base_offset+requested_length-
1<=vme_memory_high_decode.

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 88

};

struct VME_A64_Slave_Allocation_Results {

void *local_memory_slave_base; //32 bit pointer to slaved memory. Null for
p(N) calls.

unsigned __int64 vme_memory_base_offset; //where in VME space
*local_memory_slave starts.

volatile unsigned __int64 vme_memory_low_decode; //first VME address
decoded to support the given request

volatile unsigned __int64 vme_memory_high_decode; //last VME address
decoded to support the given request

//Note: vme_memory_low_decode <= vme_memory_base_offset.

//Note vme_memory_base_offset+requested_length-
1<=vme_memory_high_decode.

};

1. The first 4 bytes read from the open VME memory slave file handle are a
pointer the local caller should use to access the first byte of the slaved
memory which corresponds to the VME space-- the VME address of
which is in the next 4 bytes. These are the offset into the selected VME
space other bus-masters should use to get the first byte of memory
referred to in the first four bytes. If the caller is a kernel mode caller, the
addresses given will be valid in any process/thread context. If a user mode
caller (the majority), the virtual addresses given will only be valid in the
context of the calling process. This value has no meaning for requests
made from processors connected via network. For requests to reserve
space (p(N) parameter), this value is NULL, no space is mapped.

2. The next four bytes (8 if A64 space) are the VME address of the byte in

the desired space which corresponds to the first byte offered by this
request. Note that VME addresses below this value may be decoded, this
just corresponds to the address which if modified by other VME bus
masters will be readable as the first byte of the file or at the address in the
user process mentioned by the first 4 bytes read. This value is usually the
<VME offset> b(xxx) or b{xxx} parameter, which shouldn't be specified
explicitly unless it is clearly necessary. (See the discussion under the p(N)
parameter).

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 89

3. The next four bytes (8 if A64 space) refer to the lowest address in the
chosen VME space that is decoded by (as thus allocated to) this processor
to support the named request. This may be lower, perhaps depending on
the hardware much lower, than the desired VME offset. These addresses
are always backed by physical memory which is always available, whether
the calling process is "swapped in" or not. Note that large requests for
slave memory may not succeed if the system doesn't have enough "non
paged" memory set aside. Windows/NT users can avoid this constraint
for large slave space sharing requests (>64K roughly depending on the
installed memory of the system), see the note below.

4. The next four bytes (8 if A64 space) are the highest VME address used by
this request, which may be well beyond the desired number of bytes and
starting offset requested. The size of the decoded space may be larger than
the requested space due to hardware constraints which usually limit the
minimum decodable size to 4096 bytes, but possibly many megabytes on
some processors.

Note: On some VME interfaces, local memory outside the
ranges desired and returned will be exposed to the VME
bus which is subject to "paging" under the operating
system. VME bus masters which change this memory can
cause system crashes and unpredictable behavior. On
systems using the Newbridge/Tundra Universe chip, only
memory specifically allocated for VME access is made
available, which maintains local integrity. But, this is not
the case for all interfaces.

So, beyond 4K address boundaries on non-Newbridge
systems, the decoded space may refer to physical memory
subject to paging, and should not be used by other VME
resources, even though it is decoded by the local hardware.
To save physical memory, DriveVME may not be able to
allocate to this request all the memory needed to allow the
hardware to offer just the desired addresses. It will always
fix in a non-paged way and allocate enough for the desired
request, however, and is little more as physically possible.
Be sure only to refer to the requested memory both locally
and over the bus, as even though other physically nearby
memory may be fixed and allocated, it may not be mapped
into the virtual space of the calling process. Changing that
reserved memory will likely cause random system failures.

5. For example, to share 16 bytes at VME offset 40, it is likely the system will
have to decode 4096 bytes starting at VME offset 0. The system allocates
and sets aside whatever physical memory is needed so that requests to the

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 90

decoded space do not result in bus errors, but access is granted to the
calling process of only the requested length beginning at the requested
offset. Drive/VME attempts to consolidate nearby requests for slave
VME memory, to save the scarce resource of VME slave memory
decoding registers.

6. To conserve VME slave hardware decoding resources, it is the best policy
to open as few of these files as possible, requesting as much memory as
will be needed by the entire effort in one handle, then sharing that within
the driver or application. Generally speaking, opening several file handles
requesting memory in the same space but offset more than 4K from
another request, or using different sharing terms generally consumes a
VME slave interface hardware resource.

7. Most CPU-VME interfaces have minimum numbers of bytes that must be

decoded from the VME space. For example, if a request asks only for 16
bytes to be shared between VME and local space, it might be that 4096
bytes of VME memory must be decoded to offer access to the 16 desired.
This has no effect upon the calling program, but may conflict with other
VME cards.

8. Note: Many systems limit the number of access modes and spaces in
which slave memory can be simultaneously offered, sometimes to just one.
Users should allow for as many default parameters as possible for
compatibility. Also: For security, if the only file opened is "\S\X" then the
slave interface is disabled, and all further attempts to grant slave access to
local memory will be denied.

The options listed above after the V:\S\ can be placed in any
order. There are defaults for all of them, typically only the
<address range> need be specified. The parameter options are
not case sensitive, the casing shown below is suggested for
clarity. In order to be accepted as valid, at least one parameter

must be specified. Also, the "extension" convention (the . CSV or .TXT or .BIN)
is ignored.

Actually, all characters including and after the first '.' are ignored, any comments
or "extension" conventions may be noted there.

Like the other DriveVME interfaces, the slave mode interface appears through the
file system as a sub-directory, usually on the "V" drive (use the "registry" or similar
environment tracking system device configuration parameters (typically the
"DriveLetter" parameter) to select other "drive" letters). Note that during
directory scans, only "open" or "in use" filenames will appear, but all "open"

Slave Interface
Filename Oriented
Command
Parameters:

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 91

requests will succeed if formatted properly and if access is not blocked by other
VME resource using programs.

Some operating systems do not permit passing arbitrary and lengthy strings
through the filename convention to devices. If the device file "DriveVME" is
opened with no arguments (usually \\.\DriveVME or DRIVEVME:), the desired
parameters can be established by passing them in the first write call to the newly
opened file handle. Just make the entire string listed above from the root (with or
without a trailing 0, but without the "drive" letter) the first write to the newly
opened "DriveVME" device file. The two specification methods thereafter give
identical results. (So: "\S\...options") If there are errors (permission conflicts,
etc.), the open or write request will fail.

Should any errors occur when opening a Drive/VME file (or writing to
\\.\DriveVME the first time), the open request will fail, and a status message
your operating system will be returned. Typical errors relate to syntax errors in the
parameter field (STATUS_INVALID_PARAMETER), attempts to use facilities
not supported by the current CPU, attempts to use facilities already in restricted
use, and so on (STATUS_ACCESS_DENIED). In any event, the open request
succeeds without error only if the requests are granted, and the file transfers end
without error only if the desired transfer is complete.

WINDOWS/NT Note: Microsoft NT does not provide a supported way
to automatically specifically take an arbitrary fixed system physical address,
remove it from the virtual memory scheme and make it free for slave use.
This note describes a setup method which through extra setup makes this
possible. Without any special intervention, NT can provide non-cached,
cache-aligned addresses which it picks for slave memory operations, which
are stable, but not repeatable boot to boot. In the slave memory
parameters (\s\...) the address term will always succeed if the physical start
address is omitted, and only the desired length is provided.

For example: \S\a(#100) would assign 256 fixed bytes from the non-
paged memory pool at an address convenient to Windows/NT, which is
not reported to the user until after the call succeeds. This is perfectly
acceptable to any application which can communicate to the other bus-
master devices the address to use. This method is by far to be preferred as
it is more portable.

However, some devices require that the physical address used, coupled
with a known VME address offset, be known in advance to offer PC
memory at a known fixed VME space memory address, which is always
the same every time the system boots. Other requirements call for a larger
amount of memory to be slaved than the non-paged memory pool under

Setting aside more
than 64K of slave
memory under
Windows/NT

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 92

Windows NT provides. There is a safe way to satisfy both these needs
under Windows NT.

The Windows NT memory manager can be instructed to use less than the
total memory available on the processor for paging, essentially ignoring the
remaining memory. Drive/VME can cause this "unavailable" memory to
nevertheless be assigned into the slave memory task in a fully supported, if
not documented, way to the virtual memory space. To make such fixed
memory available, you must be sure you need it, then edit the "boot.ini"
file setting the MAXMEM parameter. Find the line that boots the system,
then reduce the amount of memory available to Windows NT virtual
memory management by the number of megabytes you wish to offer for
known-in-advance fixed memory physical addressing. For example, on a
16 megabyte machine, BOOT.INI entry:

multi(0)disk(0)rdisk(0)partition(1)\NT="Windows NT" /MAXMEM=15

would reduce the amount of memory Windows/NT uses to 15 of 16
megabytes. You can then specify that the physical address to use be
assigned in that last megabyte, for example:
\S\a(f00000#1000)b(20000000) would allocate 64K bytes of memory
starting at fixed VME address 0x20f00000 in the VME extended space.
The virtual address of this 64K chunk mapped into the calling process
may vary from boot to boot, but the actual memory allocated will not
change. Remember that the first four bytes read from the file returns the
address in the caller's space to use for local access to the shared pool, and
that the next four bytes is the base address from the VME perspective to
use.

In order for this to succeed, you must edit the "Registry" entry for the
DriveVME device as follows:

1. Launch the "Windows NT Diagnostics" program, choose under the
"tools" option the "registry editor".

2. Under the "HKEY LOCAL MACHINE" entry, open "System"
"Current Control Set" "Services" open "DriveVME".

3. Open the "Parameters" sub-entry. There you will see an entry
'SlaveRamBase' and 'SlaveRamLength'. Set these to the lowest address
DriveVME can assume is both present and assignable as slave memory, in
hex, but on or above the value used for the "MAXMEM" parameter
discussed above. Set 'SlaveRamLength' for the total number of bytes
starting at "SlaveRamBase" you wish to reserve for slave memory
operations. DriveVME will claim these resources on startup, and will not
start if another device previously claims that space. If you change these
parameters, you must reboot before the changes will be noted.

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 93

Once accepted, you may specify ranges between SlaveRamBase through
SlaveRamBase+SlaveRamLength-1 as the first parameter in the
a(xxx#yyy) term, which will then give an address in VME space which
does not change each boot.

Note: The value "SlaveRamBase+SlaveRamLength" is used to set
the highest possible address that might be offered as slave memory
for this system. The default is SlaveRamBase=32Meg,
SlaveRamLength=0. It is important that you set this parameter
accurately to within a power of 2 for the amount of memory in your
system. So if your system is 16MB,
8MB<=SlaveRamBase+SlaveRamLength<=16MB. If this parameter
is set higher than need be, your system may deny requests for
particular VME addresses actually available

For example, if the VME address you desire starts at 16Meg in the
extended space, and due to un-updated SlaveRamBase values the system
thinks you have 32Meg of memory, but you only really have 12, it will only
accept b(xxx) parameters that are multiples of 32Meg on some CPU's.
Once you update SlaveRamBase, the system will allow slave mappings to
occur every 16Meg, permitting the use of the desired address.

Note: Remember to read the address information bytes regarding
the slave configuration in a single read, not multiple smaller reads.

<VME space>

This selects which of the various VME memory spaces will be accessed.
<space> may be one of: sI, sS or sE.

sI - Short I/O Space (A16). Address range 0- 0xffff (not often supported)

sS - Standard Memory Space (A24). Address range 0 - 0xffffff

sE - Extended Memory Space (A32). Address range 0 - 0xffffffff (Default)

s6 – VME Extensions A64 Memory Space. Address range 0 - 0xffffffffffffffff

sC – CR/CSR Space. Special register sharing version in A24. 512K
bytes/image. Address range 0 - 0xffffff (Nearly always only used for mapping
VME bridge device interface registers to the VME bus.) NOTE: This expects
VME address setting of a(#80000) which will always choose as the 0..31 <<19
A24 value the value stored in the CBAR / CR-CSR base address register at
system powerup time. Specifying a VME address is possible (e.g.
…a(100000#80000)…), that will set CBAR.

Slave Mode
DRIVE/VME Open
File Parameter
Reference

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 94

sU(xx) - User set VME address modifier, not available on all CPU boards. Sets
the read/write cycle and access type (AM code) to the hex code in place of
'xx', above. Use sU{xx} for decimal xx. Some interfaces do not support this.

If no <space> entry is specified, the default is the extended (4Gb) address
space (sE).

<Blanket Slave Interface Disable>

One of: X, K. The letter 'X' blocks all slave interface open attempts of any
sort. The letter 'K' blocks any user mode process from offering slave memory,
but not kernel mode processes. These calls can only succeed when there are
no otherwise prohibited existing slave mappings in effect. If the X option is
included, no other parameters have meaning or need be specified. A request to
offer memory can proceed AFTER one with the K option, but only from a
kernel mode process. Neither of these is selected by default. Any parameters
specified with the K option are ignored, and no space is offered.

<Slave Response cycle types>

This describes the privilege level setting to use for these VME master mode
read cycles. Some VME hardware and other resources require supervisory
mode cycles, but most use non-privileged mode cycles. <Slave cycle> may be
one of:

cN - Respond to Non-Privileged cycles and Supervisory cycles (default)

cP - Respond to Program and Data access cycles (default)

cD - Respond to Data access cycles, but not program cycles.

cG - Respond to Program access cycles, but not Data cycles.

cS - Respond to Supervisory cycles, but not Non-Privileged cycles.

cV - Respond to Non-Privileged cycles, but not Supervisory cycles.
 New in version 4: All modes respond to Single cycle transactions. In
addition:

cB – Respond to BLT cycles
cM – Respond to MBLT cycles
cE – Respond to 2eVME cycles
cT – Respond to 2eSST cycles
cR – Respond to 2eSST Broadcast cycles (Board ID #1..21 set at boot time
in the registry, DriveVME DWORD parameter RXBROADCASTID. Missing
or 0 means no 2eSST broadcasts will be received. Configure using
AssistVME’s ‘Syscon’ general controls setup page. Changes only take effect
after a reboot.)

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 95

c1 – only for cT and cR: Respond only when speeds are 160MB/s or less.
c2 – only for cT and cR: Respond only when speeds are 267MB/s or less.
c3 – only for cT and cR: Respond only when speeds are 320MB/s or less.

<Slave Transfer Priority Options>

L0 - When slave transfers are being done via File I/O to local memory, this
command (the default) will execute the transfer at the thread's normal
execution priority and without first locking the VME bus.
L1 - This will raise the processor priority above user threads lock the VME
bus, execute the transfer, flush the processor caches, then release the VME
bus.
L2 - Same as L1 but the transfer happens at a priority above all VME
interrupts.
L3 - Same as L2 but the transfer happens above all but multiprocessor, clock
and power fail interrupts.
L4 - Same as L3 but accepting no interrupts.

<Slave Bus Options>

uP - VME writes are "posted" - they are marked complete before the local
write completes, for performance. This is ignored for I/O space writes

uC - VME writes are "coupled" - they do not complete until the associated
local write completes, for interlocking. This is the default.

uR - VME reads are anticipated and prefetched on the local bus, to speed up
sequential VME reads. This is ignored on I/O space reads.

uI - VME reads occur on the local bus one for one, for interlocking. This is
the default.

uL - VME Read-Modify-Write cycles lock the local bus during the VME
RMW transfer, for full atomic operations throughout. This is not the default
as every non-block transfer is slowed by this choice, RMW or not.

uN - VME Read-Modify-Write cycles are broken into non-atomic back to
back read/writes on the local bus. This is faster, and should be used for all
slave regions not involved in RMW operations. It is the default.

Note: The standard driver assumes the local bus is a 32 bit bus. If
a 64 bit local bus is implemented (e.g. PCI64) Contact N4 for a
PCI64 enabled DriveVME driver.

You may specify more than one parameter, like: uPuR for posted writes and
prefetched reads.

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 96

<PC local memory address range>

This describes the range of local, physical addresses, to be offered under the
named <space> and so on, to be made available to the VME bus. Some local
resources have local addresses and ranges that are fixed by hardware design.
These follow. Later the methods for specifying stretches of local memory are
defined. The predefined resources are:

 M --
this causes the broadcast location monitor detectors to be mapped beginning
at the chosen VME space and address. This is a method for many systems to
receive an interrupt at the same moment caused by one other system, or to
detect offboard activity at a particular VME address. There are usually 8 bytes
per location monitor of which only the lsb is actually watched, and there are
usually 4 monitors. Any VME traffic at all to any board on the chassis that
includes the address of a location monitor will, if the associated interrupt is
enabled via other mechanisms, cause an interrupt to occur on the system with
this file open whether it was the target of the VME cycle or not. The system
will reserve the minimum space, 4K, though the actual range monitored is
much less than that. Do not read or write to this file once opened, its purpose
is only to establish VME location monitor addresses, active only while the file
is held open. To generate location monitor interrupts, generate VME write
cycles to the monitored addresses via other mechanisms. As the location
monitors decode VME space, the 4K range starting with the monitor address
cannot be otherwise used. Systems monitoring a location will acknowledge
any master cycle initiated for that space. Do not overlap the same space with
a local memory based share. *Note: there are usually VME device register
specific registers that allow for checking location monitor flags / status if
using the interrupt system is problematic. See <VME bridge chip
name>check .c and .h for details. Use the interrupt facility if board version
independence is important.

F –
this causes the entire VME bridge device control interface register set to be
offered to the VME bus. If the address space chosen is the CR/CSR space
then the system will allocate 512K. Most bridge devices will decode the first
4K to the device’s interface registers, while the further 508K will decode to
local memory. Other VME spaces will decode only the registers – the first 4K
only. Some interfaces allow one CR/CSR map and a concurrent single other
map to another VME space. Local system access to this range will appear to
offer only memory, bridge interface register access is not decoded on the PCI
side via this mechanism. This feature should be used with great caution as
contention for register settings between VME masters and DriveVME on the
local system is a possibility. DriveVME resets all registers upon loading and
unloading, then only as necessary during operations.

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 97

G --
New in version 4. This causes the global control and status registers
(semaphores, mailboxes, and other general status and control information,
generally a subset of the entire bridge device interface range designed for inter-
board communications), to be offered starting at the named VME space. Due
to OS granularity limitations, the system will show a 4K reservation, however
the VME bus typically only decodes the first 32 bytes. Local accesses to this
space will not decode the registers but only 4K of local memory, use the better
other mechanisms provided for direct individual multi-process safe local
access to these registers. For user space examples see the ‘Kernel C’ program
<bridge device id>Check.c. Kernel device drivers can access the register map
directly, see dvmeddk for details. The GSCR space is a subset of the entire
register range. It allows for commonly used shared functions to be isolated
and offered separately from the entire bridge device register set. Consult the
manual for your bridge device to determine the layout and functions of this
register block. Note that mailbox interrupts require both the mailbox
locations to be offered (this function or F above), and the related mailbox
interrupt to be enabled. Otherwise the status bits will operate but no
interrupts will occur.

To offer local physical memory or IO spaces, use one of the letters a, r or i
followed by a two numbers as follows:

a([<Start offset>]<# for count or - for end offset><Count or end offset>) --
this offers local memory addresses.

r([<Start offset>]<# for count or - for end offset><Count or end offset>) --
this offers local memory addresses specified plus the value of SlaveRamBase
(the beginning of an optional large area reserved for DriveVME slave
memory)

i([<Start offset>]<# for count or - for end offset><Count or end offset>) --
this offers local I/O addresses. This makes it possible for VME masters to
directly control I/O devices on the local processor bus. (Not all VME
interfaces support this. The Universe chip does support this, the TSI148
Tempe does not).

For example: a(1ba-1bd) specifies the desired range to be from offset 0x1ba,
through 0x1bd. Using the - as a separator implies a starting/ending address
combination. Alternately using a # as a separator specifies a starting address -
number of bytes following combination. So, a(1ba#5) specifies offset 1ba, for
5 bytes.

If the letter "a" above is replaced with "r", i.e. r(0-10), then the value of
"SlaveRamBase" is added to the range. In this way, the user may specify a

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 98

Drive/VME slave address to start at some known position each boot, without
having to know for each processor where the space reserved for slave memory
begins.

Unless it is absolutely necessary, do not specify a physical absolute
starting address to offer. Let the system choose one. Specifying a
fixed starting memory address forces many added compatibility
checks which are otherwise avoidable, these can cause the request
to be denied.

1. Only kernel mode drivers may offer slave access to the
local I/O spaces.

2. Only kernel mode drivers may specify absolute physical
memory addresses below SlaveRamBase which are not
already set aside for slave operations with acceptable
permissions.

3. A request to offer slave memory will yield a particular
range of physical addresses, which can then be explicitly
specified in another request to offer the same space to
another VME range. The second and further requests to
slave a particular space may succeed if the security
parameters on the first successful request permit it. Usually
this can make memory sharable between a kernel mode
driver, the VME bus, and one or more user mode
programs all at once-- so long as the kernel mode driver
initiates the share request. That is, the request would have
been denied had a user mode process first explicitly asked
for a particular range of physical addresses below
SlaveRamBase.

4. It is permitted for two processes to request to offer the
same local memory to the same VME space. In this case,
both (without regard to whether they are user or kernel
mode) will have local process access to the same stretch of
local memory, as well as offering that memory to VME.

5. If memory is set aside using the
SlaveRamBase/SlaveRamLength registry keys, and the
/Maxmem= boot.ini parameter, then the system will
attempt to allocate unspecified start-address requests for
slave memory from the top of this space downward,
avoiding all previously allocated regions. If there is no such
space, or none remains free, the system will attempt to

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 99

allocate memory from the non-paged Windows/NT
memory pool.

6. The mechanisms for exposing local memory to VME users
requires hardware resources which typically have one or
more basic limitations:

1. The number of modes in which memory may be shared is
usually limited to somewhere between 1 and 4, and is
hardware limited. The first request which uses the
hardware sets the mode for the following requests. Ending
sharing frees the resource for other use.

2. The minimum amount of memory which actually gets
shared is somewhere between 4K (A16 space) to 64K (all
others), but could be as high as 16MB on some hardware.
However, all memory reported by Drive/VME as
satisfying a sharing request is guaranteed to be fixed, non-
pageable memory, though the sharing process on non-
Universe chip VME access designs may also expose other
memory as a side-effect.

3. The exact same VME space can't be exposed to two
different local physical addresses. But, access to the local
physical addresses shared on VME may be shared among
different processes. And, the same local physical addresses
may be appear at the same moment as different VME
spaces.

The range of VME addresses offered can only be offered in
chunks of 4K for the VME A16 space, and 64K for all
other spaces. Requests for less than this succeed, but
memory is actually allocated for the entire size of the
minimum chunk with whatever alignment limitations exist,
further requests for the same sort of space get tucked into
gaps left by earlier requests. Some hardware only offers
megabytes of memory to be shared only one way in the
A24 or A32 space, and A16 capabilities. Note that this
means a request to share 1 byte may consume 16MB of
A32 space on some designs, 64K on others.

If no address range term is specified, then DriveVME assumes a(#1).

If no separator character is found, "#1" is assumed. So: a(20-20) = a(20#1) =
a(20) = a{32}.

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 100

Note: using {} instead of () implies decimal instead of hex numbers, so
a(10#10) is the same as a{16-32}.

Note: Some systems will not let you specify a particular physical address to
share, or do not offer the ability to share all legal physical addresses. If your
system does not let you specify a particular starting physical memory address,
then you can let the system determine a legal physical address for your
process/driver by only specifying an amount of memory desired to share as
follows: a(#<count>) or a{#<count>} for a decimal count. An eight byte
read of the open file will yield first the virtual address (legal address mapped
into the virtual space of your software) of the shared space, followed by the
actual starting physical VME (not local) address shared. For example: a(#100)
would allocate and fix a range 256 bytes long somewhere in physical memory,
which it will report in the file read.

It is always safer and more portable to let the system choose the
physical start address whenever possible. Some systems permit
preassigned fixed slave addressing, see the Windows/NT note
above.

<VME Address 0 offset>

NOTE: The meaning of this term has changed from pre-release versions.

z(xxxx), or z{dddd} for decimal, instructs the system to make place the first
byte of the shared physical memory at the VME address given in this
command in the VME space, or fail the request.

b(xxxx), or b{dddd} for decimal, to attempt the "z" interpretation above, or
failing that, where R = number of bytes of physical local memory: z & ~(r-1)
<= assigned VME base address <= (z+r) & ~(r-1)., or fail the request if that
isn't possible. In prose, the system will try to pick the given address, and failing
that pick an otherwise unused VME address somewhere between the next
lower and next higher even multiple of the amount of system memory nearest
the desired value. If you must specify a VME address in your request, this is
by far the most compatible.

The default if this term is omitted is that this is system assigned. This is best
for compatibility, as some designs can not support two processes with
different values. (Note however, the use of the p(N) parameter below, which
sets aside a large chunk of memory for later allocation into smaller parts).
Drive/VME will attempt coalesce nearby requests for eqivalent VME modes
into the use of one hardware VME slave memory access resource.

The local virtual address and actual VME address assigned can be read in an 8
byte chunk from the open file handle as the first read. If the first process to
open a slave memory region does not specify this parameter, then the system

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 101

will use the values established in the ROM BIOS setup for this processor, or if
no such value is present, 0. If you are using Net/VME or some other device
driver that uses slave memory before your process can load, set the desired
VME slave offset using the ROM/BIOS, so the drivers that load before yours
establish operations using a VME base offset address acceptable to your
process.

Note: For some hardware, the acceptable values here depend on the amount
of system memory you have (see the introductory text about SlaveRamBase
and SlaveRamLength.) In particular, for portability, do not specify offsets with
low order bits set beneath the next higher power of 2 of the highest legal
physical memory address your system supports.

For example, for best compatibility, if you have a 32 MB system, be sure for
b(xxxx) xxxx & (32MB-1) ==0.

Note: Note: to see what choices are in effect, list the "S" (for slave)
subdirectory of the "V" (DriveVME) drive. All currently in-effect
choices (currently open files) will be listed there.

<Slave byte swapping>

This describes how to handle data during the transfer.

t([<swap>], one of: t(S) -the default, or t(N).

<swap> is the letter 'S' or 'N'. If the letter 's' is appended, then the data bytes
are swapped on multi-byte transfers t(s). For example, if 16 or 32 bit transfer
cycles are received, and the quantities are each separate numbers, then no
swapping need occur between big-endian (Motorola, most VME peripherals)
and little endian (Intel) architectures, as the data is placed correctly on the bus.
But if these are byte quantities (text) being read in multi-byte transfers, then
byte swapping should be selected so that the string "fast" saved in a big-endian
way does not come out as "tsaf" on a little-endian machine. The swap is for
the full width of the transfer, so for 16 bit transfers bytes 1 and 2 come over
2,1, 32 bit transfers bytes 1,2,3,4 as 4,3,2,1, and so on. This can only be done
on the hardware that supports it, no byte swapping software emulation is
available. Use t(N) to cause data to be moved "straight through".

This whole issue of alignment and byte-swapping arises because the VME bus
allows for processors which use different data storage schemes to operate
together. As the bus can't know the content of the data, it is up to the
software and each processor to correctly align and swap bytes as needed to
preserve the meaning in the data transferred.

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 102

Note: Slave byte swapping is not supported by all slave VME interfaces
(current versions of the Tundra/Newbridge Universe chip do not, for
example).

<error handling>

This permits the caller to receive a windows message, or to have an event sent
to the Drive/VME operations log, or both, whenever a write posted by VME
request for local resources fails. Coupled requests are terminated with VME
BERR cycles, but posted requests may fail after the VME process which
initiated them complete. NOTE: Typically any writes which have been posted
are flushed upon the detection of an error on the local side.

e(N) Causes no special action to occur in the event of a local bus error in reply
to a VME request, other than returning the bus default value. This is typically -
1. Note that many systems can only support this mode, which is the default.
The AssistVME log will not be updated to report anything, even if a bus error
is detected.

e(S) The AssistVME drive operations log will be updated with as much detail
as the system can provide.

e(Mxxxx) Send windows message xxxx (always in decimal) to the calling
process, with the local address which failed as the 32 bit LParam value. Not all
platforms record accurately which VME request it was which generated the
error, only that the error did occur in the context of handling a coupled local
slave VME initiated posted write request. If the address causing the error is
unknown or indeterminate, the resulting value is 0. The AssistVME drive
operations log will be updated with as much details as the system can provide.
Note that AssistVME must be running in its default "service" mode for this
feature to have meaning. (AssistVME is always installed with Drive/VME,
unless special action is taken to disable or stop it.)

<permissions>

This term determines which other threads and processes can also offer this
range. The permissions allowed follow the letter 'p'. These permissions apply
to VME spaces taken as a whole (io, standard, extended) without regard to
cycle type (supervisory, non_privileged, user_am).

p(N) Allows all others any level of access to the given range, including
exclusive ones. However, it does not offer the caller any access to the named
range. This makes it possible to pre-declare a large range of VME addresses
which are to be used in shared or even process/thread exclusive ways
specified by calls yet to be made. This allocates local memory to support the
entire request, then allows future requests with compatible options to be auto-

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 103

assigned into some or all of this range. This includes exclusive requests for
non-overlapping sub-elements.

Whenever Drive/VME gets a request to open slave memory where the VME
base and/or physical base are left for DriveVME to choose, DriveVME will
first search all the available already allocated spaces for those with compatible
choices, and try to set the discretionary values so as to be a part of the pre-
existing request. Even when all parameters are specified but still any new
request can be logically contained within another, it will be. This allows more
calls for slave resource offering to succeed. Only when calls arrive that can't be
merged due to address or access mode conflicts will a set of VME mapping
registers be comsumed, if any are available.

The purpose of this is to make good use of the limited hardware resource
which decodes the VME requests for local access. Pre-declaring larger ranges,
which then can be sub-allocated to any number of particular threads, uses
typically only one set of VME decoding hardware resources. Were this feature
not employed, making several independent requests for nearby ranges would
use one resource per request, quickly exhausting VME hardware mapping
resources.

Note that this request can be made using the AssistVME program in advance
of running other programs which offer slave memory. The request should be
big enough to encompass all the VME-alike slave offering needs of the group
of programs to be run. In this way, programs which failed due to lack of
resources allocated separately can succeed.

The resources for the entire range will be released when the last open file
referring to any part of the range is closed.

p(A) Allows all others non-exclusive access. (default if no p term specified).
Has the effect of blocking future exclusivity requests.

p(P) Allows shared offering and access to this space and range by any other
thread in this process, but no other processes. Note that if a kernel mode
driver specifies this option, it will not block overlapping user mode requests--
however overlapping user mode requests of this sort from different processes
will block each other-- So basically the first process claiming all or part of a
space marked in this way by a kernel mode driver (which are typically run first)
will deny access to the extent of the processes's claim from other processes.
Kernel mode requests to regions marked this way by threads will succeed.

p(T) Allows this thread to have added access, but no other threads. Note that
if a kernel mode driver specifies this option, it will not block overlapping user
mode requests-- however overlapping user mode requests of this sort from
different threads will block each other-- So basically the first thread claiming
all or part of a space marked in this way by a kernel mode driver (which are

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 104

typically run first) will deny access to the extent of the threads claim from
other threads. Kernel mode requests to regions marked this way by threads
will succeed.

p(K) Allows only kernel debuggers shared access. Can't be issued in user
mode. Used by kernel mode device drivers layered atop Drive/VME. Will fail
if a user-mode debugger holds part of the requested space.

p(D) Identifies this process as a debugger. This will allow access typically
denied by p(P), p(T) requests if made by a user mode process, and will grant
any access if this is a kernel mode process. Any ranges granted will not block
any exclusivity requests by other processes, including other debuggers.

p(....F) Identifies this software as "finished" software, and in particular
essentially disables the 'D' Debugger parameter of any user mode request to
prevail against local register access exclusivity. So, an address selected with
p(TF) would block all other threads, even debugger threads, from getting
granted access to the named range, except: any kernel mode debugger will be
granted access.

Note that p(AF) "permit all, finished code" will not block debuggers as a
special case, permit all includes debuggers.

Also, consider how overlapping ranges work. For example, if thread 1 does a
"permit thread" to for addresses 10-12, then another thread 1 "permit all" for
ranges 1-100 would succeed. Other threads would not be able to access 10-12,
but would be able to get "permit all" access to 1-9 and 13-100.

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 105

DriveVME User Mode Interrupt
Handling Reference via File I/O
This chapter describes in great technical detail the topics largely automated by the
related section in the AssistVME section. It is for those who seek greater
technical understanding of the details and structure of DriveVME’s user mode
interrupt handling operations.

This chapter describes how to detect and handle interrupts using Drive/VME from
typical "user mode" programs. Writers of kernel mode device drivers should use a higher
speed method described in the DriveVME DDK. This method is somewhat slower, but
works over networks on remote chassis as well as locally, and offers more flexibility. In
particular, any program or method by which one can open and close files can be
employed to respond to VME events of choice.

The ability to read and write open files adds flexibility of handling VME interrupts from
high level "easier to write" user mode programs such as from database systems,
spreadsheets, visual basic, etc. DriveVME's "kernel 'C' Java" interface also offers a full
featured realtime operating system independant network enabled interrupt handling
facility, including time stamping, queueing and other features when higher performance is
needed. Drive/VME's Windows/NT .DLL interface also encapsulates this functionality
for Windows/NT users familiar with .DLL style interfacing. See the .DLL "include file"
DriveVME.H for programming details.

Note that Drive/VME prioritizes interrupt servicing in the order VME 7 first then in
order to 1.

The choices regarding which interrupts to handle and what should occur when the desired
interrupt occurs are specified by parameters encoded into the name of a typical file. Note:
the "AssistVME" program automates the creation and testing of these file names in a
user-friendly graphical way. The easiest approach is to use AssistVME to create the
specifications desired, then "cut and paste" the filename created there into the application
or program of your choice.

To handle VME interrupts, open a file on the Drive/VME pseudo-drive (V: on local
systems, or via a network) using these file name parameters:

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 106

V:\H\ <VME Interrupt Level><Low Vector Limit><High Vector Limit><Issue
Windows Message><Timeout Selection><Open Wait>

Some operating systems do not permit passing arbitrary and lengthy strings through the
filename convention to devices. If the device file "DriveVME" is opened with no
arguments (usually \\.\DriveVME or DRIVEVME:), the desired parameters can be
established by passing them in the first write call to the newly opened file handle. Just
make the entire string listed above from the root (with or without a trailing 0, but without
the "drive" letter) the first write to the newly opened "DriveVME" device file. The two
specification methods thereafter give identical results. (So: "\H\...options") If there are
errors (permission conflicts, etc.), the open or write request will fail.

For example, opening the file "V:\H\I(1)L(10)H(20)M(30000)T(10000000)W" would
cause windows message 30000 to be issued to the opening thread every time VME
interrupt 1 happened but only if there was a bus error during the acknowledgement cycle,
or the vector returned by the interrupting device during the acknowledgement cycle was
not less than 10 and not more than 20. These messages would be sent so long as the file
was open. Also, while the file was open, read requests to the open file handle would
complete with a timeout indication one second after they were issued, or sooner if a
device issued VME interrupt 1 with an acknowledgement vector between 10 and 20
decimal, inclusive. The format of the data returned is shown below. Also, due to the 'W'
parameter, the file open request itself would not complete until the first interrupt event
happened, and would complete showing an error if the event did not happen within one
second (the T value) of attempting to open the file.

The interrupt handling process works as follows:

1. The user opens a DriveVME interrupt handling file choosing the parameters of
interest. Interrupts are shared among all callers, there is no security needed.

2. Once the file is opened, if the Windows message option is selected and the
chassis the file is opened on is the local chassis (not a remote one via a network),
windows messages will be issued when the event occurs until the file handle is
closed or the events stop. This operates in conjunction with AssistVME. If a
higher interrupt processing rate is needed, try the kernel "C" routines from user
mode programs or the DriveVME DDK kernel mode interrupt processing
facility for highest performance by your own native NT kernel mode driver
interfaced to DriveVME.

3. Once the file is opened, make read requests to detect the event(s). Using the
overlapped I/O feature, many read requests may be pending, each event instance
will trigger the completion of only one read event (the oldest). In applications
where there is some question about whether the processing of an event will
complete before the next occurs, using overlapped I/O to have two such events
outstanding is a good idea. Since the information read includes a data about
which event caused it, one might establish a routine that does nothing but keep a
couple of reads per desired interrupt always pending, and queuing the completed
structures. Should the timeout feature be used, read events may be completed
due to timeouts instead of the actual event.

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 107

4. Should the event occur when a read request is available to complete, or a timeout
occur, the information returned will be at most 20 bytes per read request. The
data returned uses the 'C' structure:

struct DriveVME_Async_Event_Read {
 unsigned short status; //This value is ascii 'OK', with the letter 'O' in the low byte if the event
 //completed normally (whether a bus error or not), or 'TO' with a 'T' in the low byte
 //if completed due to a timeout. The ascii is to make it easier for high level applications
 //to use this facility, a simple one byte character read will get the most important information.
 unsigned short event; //This is the xx of the I(xx) parameter which opened this event file (16 bits)
 unsigned long number_of_events; //total number of times the event occurred without error
 //Note the above is incremented whether there was a read pending to record the event
 //or not. If 100 events happened and only one read request was made just before the
 //100th event happened, the value returned here would be 100, not 1.
 unsigned long information; //the last acknowledgment IACK value, -1 if bus error during iack.
 __int64 timestamp; //64 bits, the loc al system time in 100ns units since bootup when the
 // last event happened.
};

Later versions of DriveVME may complete each read request with more
information, but it is never an error to request only the amount of the read
structure desired, even if it is less than the total available. Although the file
offset is ignored, good practice (and any network use requires) that the file offset
for the read to be 0 for each request.

Therefore, it is acceptable for applications to read just one byte
per request, which will complete and return the letter 'O' after
the event happened, or will return the letter 'T' if a timeout
happened before the event did.

Note also that setting the timeout value to be 0 has a useful effect when all that is
needed is a count of interrupts of a particular sort. The call will return
immediately with a timeout, but will fill in the total event count information. This
is a very low overhead interrupt handling mechanism.

5. When the file is closed (either by call or by program termination), the interrupt
handling of the event will end, any pending read requests will be terminated with
no data transferred, and windows messages upon event notice will stop.

6. The system will continue to generate IACK cycles for any interrupt level for
which there is at least one outstanding request for processing. So only after no
applications seek interrupt service on a particular level will the processor stop
generating IACK cycles in response to interrupt requests on that level.

7. NOTE: These files should be opened with the flag
"FILE_FLAG_WRITE_THROUGH" or other necessary indication to cause all
requests for data to go to the physical device and not be cached by the operating
system. See the supplied testdrivevme.c routines for examples of how to use the
CreateFile function with this flag. There is also a programming example there of
how to translate this sort of open file into the form used by "C" functions "read
write open" and also stream functions "fread" "fwrite" and "fscanf". Programs
not capable of flushing file buffers between calls should consider using the 'W' or
'wait' parameter, discussed below. This parameter will not permit the file open

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 108

request to complete until the desired event of interest has occured or a timeout
has happened. Because every application on the operating system is capable of
opening files, even the highest level programs can suspend operations until an
interrupt of choice happens and detect an error if it doesn't happen within a
given amount of time.

Parameter Specifications:
<VME Interrupt Level>

This selects the VME interrupt level to be handled. One file handle can handle only
one interrupt level. All VME interrupts are shared, and handled in the priority of
highest numerically first, when the hardware does not supply this VME prioritization
DriveVME implements it in software. These values are one of I(0) I(1) ... Where:

I(1) I(2) .. I(7) - VME Interrupt Levels 1 through 7
I(8) - Power failure. Called as soon as a power failure is detected. The application should
immediately save any critical information then exit. Not all chassis detect this or provide
for a safe power-down interval.
I(9) - Abort Switch Press. Some processors provide an external button or switch, this
level will detect when that has been pushed or pressed. Note that there is limited
"debounce" support in some cases, so many interrupts may occur within a fraction of a
second and correspond to a single press.
I(10) - VME Bus Error. Some processors generate an interrupt any time a VME cycle
initiated by the processor (NOT initiated by other bus masters) ends in a bus error. Other
VME interfaces do so only in certain modes (like posted instead of coupled transfers).
This interrupt is generated by those processors on each such occasion.
I(11) - VME SysFail signal. This interrupt is called when any device on a chassis asserts
the sysfail signal. Note that some VME interfaces can not clear this assertion except by
hardware reset. This interrupt is issued upon the first such detection and thereafter about
once per second until the signal is cleared. If the local hardware does not support
software clearing this signal it is generated until power-down once per second.
I(12) - Software initiated local interrupt. This signal is generated internally by DriveVME,
it has little practical value to others. Consult the Tundra/Newbridge manual for details.
I(13) - Interrupt Acknowledge Interrupt. This signal is generated (on some processors,
check your manufacturer for details) whenever another VME resource issues an interrupt
acknowledge cycle for ANY interrupt level issued but not yet serviced by the local
chassis. DriveVME handles these interrupts internally as it sequences and in some cases
serializes local interrupt generation. This signal is available as a trigger for user programs
for completeness, however we do not see heavy practical application by most.
I(14) - Local Bus Error. This interrupt occurs whever a VME cycle can't be serviced by
the local bus. This should never happen unless DriveVME's control of the VME
interface is corrupted or there is a physical fault.
I(15) - DMA Complete. Drive/VME offers DMA oriented data transfers on interfaces
that support it. This interrupt is issued whenever an ongoing transfer has completed.
I(16) - VME Bus Ownership. DriveVME's VME master interface can upon command
lock the VME bus for exclusive use by this processor. The request to lock the bus may
not be competed right away, this interrupt is generated when the bus is granted to the
local system. As most locked bus transfers happen within the context of another
DriveVME facility, we do not foresee much application for users by this facility.

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 109

I(17) - "No Drift" Clock interrupt. Drive/VME offers an interrupt on clock timeout
based on a fine grained timer which can be set to trigger at fixed intervals and retrigger
only at fixed intervals without regard to processing time or clock resetting. That is, the
timer does not drift beyond the limits imposed by the driving system timer clock. This
enables wakeup on those intervals. See the parameters for setting the wakeup interval.

This value has no default and must be supplied with every interrupt handling file
opened.

<Low Vector Limit>

This parameter takes the form L(<integer>), like L(12). This parameter has meaning
for those interrupts which supply information with the interrupt, and for the timer.

In the case of detecting VME interrupts (in conjunction with parameter I(1).. I(7)),
should the interrupt vector supplied by the interrupting source during the IACK cycle
issued by this processor be below the value in L(xx) then this handler will ignore the
interrupt. (Remember, Drive/VME interrupts are shared, so other handlers may
process the interrupt. These choices determine only what this handler will do and
have no effect on the other handlers). Note that bus errors during the IACK cycle
will trigger this interrupt, supplying a vector of -1, without regard to this value.

In the case of I(17), the clock, this value is an amount of time expressed in units of
100 nanoseconds for the timer interval. The value is stored internally as a 64 bit
integer.

This value if omitted is presumed to be L(0).

<High Vector Limit>

This parameter takes the form H(<integer>), like H(255) or H(-1). This value if
omitted is presumed to be L(255).

In the case of handling VME interrupts, (in conjunction with parameter I(1)..I(7)),
this value describes the highest interrupt acknowledge vector which can trigger this
handling routine. Should the IACK value supplied by the interrupting source be
higher than this value, the routine will not be triggered. In the event there is a bus
error while reading the interrupt vector, the routine will be triggered with an IACK
value of -1.

In the case of I(17), the clock, should this value be zero or above, then the clock will
act as a "one shot" clock, triggering the interrupt just once upon completion. Note
that the "no drift" feature in this case does not have meaning because the interrupt
will only happen once. In the case this value is -1, the clock will retrigger each count
down, and will trigger an interrupt to occur at the next even interval measured from
the base time measured from when the file was opened. Events will only be triggered
at the time intervals established, should the processing of an the event timeout take
longer than the interval (when uninterruptible code runs-- blocking the timer, say),
when it eventually does finish the next wakeup will not occur until the next even
multiple of the base time plus interval, skipping the missing ones. To restate: the
timebase is absolute marked from the time the file is opened.

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 110

<Issue Windows Message>

If operations are occurring on the local chassis (this interrupt handling file is not
opened over a network), then it is possible to cause Drive/VME to issue a windows
message to the calling thread whenever the chosen interrupt event occurs. The
interrupt acknowledge vector or other information is supplied as the "long"
parameter. If there was a bus error then the "word" parameter will be 1 (and the
"long" parameter -1), otherwise it will be zero.

The parameter is specified M(xxx), like M(32000). The windows message value is a
decimal integer corresponding to the windows message you wish DriveVME to send
to the calling process. This value is determined by the needs of each application,
typically it is on or above the value WM_USER. Note: AssistVME must be running
to provide this facility. This uses the same mechanism as the bus error interrupt
alerts, see the file DvmeMFCDemo for source code and executable programming
examples.

If this parameter is omitted, then no Windows message will be issued. This parameter
will not generate windows messages on the local system when the interrupt file is
opened to handle interrupts on a remote chassis via a network.

<Timeout Selection>

When file read request arrives to wait for the desired event, typically the request will
not be satisfied until either the file handle is closed or the event occurs or 10 seconds
elapse. Specifying this value of T(xxx) where xxx is a time in 100 ns units will cause
any request pending for this file handle to be cancelled with a timeout data indication
sometime shortly after this amount of time has expired starting when each request is
issued. This option has no meaning or effect on the Windows Message feature. This
value can be set to at most 10 seconds, and if omitted is defaulted to 10 seconds. If a
value higher than 10 seconds is requested, the value is shortened without notice to 10
seconds. Programmers must always check to see whether the result of a read was due
to a timeout or the desired event. The reason is that pending reads consume system
resources, particularly over networks, and so potential indefinite pending reads are
not good progamming practice. Note that the information transferred in a timeout is
accurate as of the last recorded event. Also by checking the first 2 bytes of the
returned information the user can determine whether the read event was the result of
a timeout or an event occurance.

<OpenWait>

This feature is enabled by including the single letter 'W' in the file open string. It is by
default disabled. When present, the request to open the event processing file will not
complete until either the timeout specified has occured or at least one of the desired
events itself has occured. If this parameter is present and no timeout parameter is
present or if the timeout parameter is over 10 seconds, the system will insert a
timeout parameter of ten seconds. If the event desired did not occur within the
desired interval, the attempt to open the file will fail with an "access denied" error
message. If the event occured, the file will open normally. Once open, the file will
behave normally (however the default upper timeout limit of 10 seconds will still be

C H A P T E R 7 : D R I V E V M E U S E R M O D E I N T E R R U P T H A N D L I N G
R E F E R E N C E V I A F I L E I / O

Page 111

in effect if no lower timeout limit was requested). This feature makes it possible to
detect an event just by noting being able to open a file. If the file opens (even via a
network) then the event happened. If the file doesn't open, then the event didn't
happen.

C H A P T E R 8 : D R I V E V M E L I C E N S E A G R E E M E N T

Page 112

DriveVME License Agreement
Note: DriveVME is sold only to VME processor manufacturers and embedded systems manufacturers, not to end
users. If you wish to obtain DriveVME and your processor or embedded system manufacturer doesn’t carry
DriveVME, contact N4 Communcations at www.n4comm.com

N4 Communications DriveVME LICENSE AGREEMENT

This is a legal agreement between you, the licensee, and N4 Communications.
ANY SOFTWARE INTERNALLY MARKED "EVALUATION", SUCH AS THAT
DOWNLOADED FROM THE INTERNET, IS NOT LICENSED FOR ANY
PURPOSE OTHER THAN EVALUATION AND INITIAL DEVELOPMENT
EFFORTS FOR A PERIOD OF 30 DAYS FROM THE DATE IT WAS
DOWNLOADED. IN PARTICULAR ANY COMMERCIAL USE OTHER THAN FOR
FUNCTIONAL EVALUATION, INCLUDING ALTERATION OF THE SOFTWARE
TO DEFEAT NOTIFICATION OF THE EVALUATION STATUS OF THE
SOFTWARE, IS UNLICENSED AND A IS A VIOLATION OF COPYRIGHT. NO
WARRANTY OF ANY KIND IS OFFERED RELATING TO EVALUATION
SOFTWARE.

REGARDING SOFTWARE FOR WHICH A FEE HAS BEEN PAID TO N4
COMMUNICATIONS: BY OPENING THIS SEALED DISK PACKAGE, OR
ORDERING THIS SOFTWARE BY ELECTRONIC MEANS AFTER BEING
NOTIFIED OF THIS AGREEMENT- YOU ARE AGREEING TO BE BOUND BY
THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS
OF THIS AGREEMENT, TERMINATE THE ELECTRONIC ORDERING PROCESS
NOW OR PROMPTLY RETURN THE UNOPENED DISK PACKAGE AND THE
ACCOMPANYING ITEMS (including written materials and binders or other containers)
TO THE PLACE WHERE YOU OBTAINED THEM FOR A FULL REFUND.

Products:

DVMEDDK - Drive/VME Developers Kit.. Kit includes source code to all programming
examples, source code to DriveVME.DLL. Complied programs AssistVME, Drive/VME
runtime for one CPU, demo versions of other N4 products. License is the typical
"development end user" type license where the license attaches to one CPU in the end-user's

C H A P T E R 8 : D R I V E V M E L I C E N S E A G R E E M E N T

Page 113

organization. If there are two developers, two DDK's must be purchased, etc. One DDK
must be purchased per customer before any DVMERUN's may be licensed.

DVMERUN - Drive/VME Runtime. Kit includes Drive/VME runtime for one CPU,
minimal installation software. The license attaches to the CPU the product is first installed
on, and moves with the ownership of the CPU.

GRANT OF LICENSE. Development Kits: N4 Communications grants to you the right
to use one copy of DVMEDDK in particular and any other N4 product whose order code
ends in "DDK" (driver development kits) license purchased on a single terminal connected
to a single computer (i.e. with a single CPU). You may not network the SOFTWARE or
otherwise cause it to be loaded on more than one computer or computer terminal at the
same time within the purchasing organiztion.

GRANT OF LICENSE. Runtime Versions: N4 grants the licensee of DVMERUN in
particular and all other N4 software whose product code name ends in "RUN" the right to
install it on a single processor and no other, but with the license automatically transferring to
the any new owner of that particular processor.

COPYRIGHT. The SOFTWARE is owned by N4 Communications and is protected by
United States copyright laws and international treaty provision. Therefore, you must treat the
SOFTWARE like any other copyrighted material (e.g. a book or musical recording) except
that you may either (a) make one copy of the SOFTWARE solely for backup or archival
purposes, or (b) transfer the SOFTWARE to a single hard disk provided you keep the
original solely for backup or archival purposes. You may not copy the written materials.

OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may
transfer the SOFTWARE and written materials on a permanent basis provided you retain no
copies and the recipient agrees to the terms of this Agreement. You may not reverse
engineer, decompile or disassemble the SOFTWARE.

AUDITING RIGHTS. You agree to instruct the vendor of your VME or other processors
and also you yourself provide N4 or its agents reasonable access during business days upon
demand by N4 to facilities and records and to assist N4 and it's agents in the task of
demonstrating compliance with this license agreement. You understand that in the event
noncompliance with this agreement is discovered the purchaser and end users will be
responsible for all agency fees, expenses, penalties and damages provided by law relating to
the discovery and remedy of the noncompliance, which fees are far in excess of the license
price.

DUAL MEDIA SOFTWARE. If the SOFTWARE package contains more than one form
of electronic media (3-1/2" disk, CD-ROM, etc.) then you may use only the form
appropriate for your single-user computer. You may not use the other form on another
computer or loan, rent, lease, or transfer it to another user except as part of the permanent
transfer (as provided above) of all SOFTWARE and written materials.

C H A P T E R 8 : D R I V E V M E L I C E N S E A G R E E M E N T

Page 114

Transfer N4 may assign it's rights and obligations to any under this agreement to any party
upon 30 days notice to any active Plan B or Plan C licensee.

LIMITED WARRANTY

LIMITED WARRANTY. N4 Communications warrants that the SOFTWARE will
perform substantially in accordance with the performance demonstrated by the freely
available evaluation versions of the products for a period of 90 days from the date of receipt.
Any implied warranties on the SOFTWARE are limited to 90 days. Some states do not allow
limitations on duration of an implied warranty, so the above limitation may not apply to you.
N4 provides extensive and freely available over the internet "demonstration" versions of all
these products for review. N4 warrants that the delivered "resale" versions are the same as
the freely available versions except for the removal of the "demo software" functionality.
Given the ability for customers to review the product's performance in advance, N4 does
not provide any further warranties of any kind regarding the functions or appropriateness of
N4 for any particular purpose. Prospective Licensees and Licensees of older versions are
encouraged to determine the suitability of N4's products for their purposes in advance of
license purchase and deployment.

CUSTOMER REMEDIES. N4 Communications's entire liability and your exclusive
remedy shall be, at N4 Communications's option, either (a) return of the price paid, or (b)
repair or replacement of the SOFTWARE that does not meet N4 Communications's
Limited Warranty and which is returned to the place of purchase. This Limited Warranty is
void if failure of the SOFTWARE or hardware has resulted from accident, abuse, or
misapplication. Any replacement SOFTWARE will be warranted for the remainder of the
original warranty period or 30 days, whichever is longer.

NO OTHER WARRANTIES. N4 Communications AND ITS SUPPLIERS DISCLAIM
ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE,
THE ACCOMPANYING WRITTEN MATERIALS, AND ANY ACCOMPANYING
HARDWARE. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL
RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM STATE TO STATE.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. IN NO EVENT
SHALL N4 Communications OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES
WHATSOEVER (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF
BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF
OR THE INABILITY TO USE THIS N4 Communications PRODUCT EVEN IF N4
Communications HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

U.S. GOVERNMENT RESTRICTED RIGHTS

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use,
duplication, or disclosure by the Government is subject to restrictions as set forth in

C H A P T E R 8 : D R I V E V M E L I C E N S E A G R E E M E N T

Page 115

subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software clause at
252.227-7013. Contractor/manufacturer is N4 Communications / N4 Communications /
2118 Lundy Lane / Bettendorf, Iowa 52722.

This Agreement is governed by the laws of the State of Iowa.

Should you have any questions concerning this Agreement, or if you wish to contact N4
Communications for any reason, please write or call: N4 Communications / 2118 Lundy
Lane / Bettendorf, Iowa 52722 / Tel : (563) 650-7800 / Fax: (563) 332-9633

© 1997-2005, N4 Communications Co. All rights reserved.

